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Preface

A one-day meeting in Mareh 1999 at Nottingham was eonvened to explore techniques
for modeling human performance in synthetic environments. A list of participants is
available as Appendix A. The presentations served as preliminary versions of some ehapters
of this book. The chapters were expanded based on the day’s discussions, extended
reflection, and further informal discussion.

Unlike a very similar, carlier review (Elkind, Card, Hoehberg, & Huey, 1990) that noted
the need to develop theory before applying such models, we are able to conclude that the
models presented here are available and useful. The question remaining is how to improve
them. We found that the resulting report was usable as a general update to Pew and Mavor’s
(1998) book, as it reviewed work that was done after their book. In particular, we were able
to cxamine a wider variety of cognitive architectures developed outside the United States.
This report also provides a detailed souree of further ideas and suggestions for projects. We
particularly draw the reader’s attention to the importance of the integration and usability of
models. Some implications apply more to the United Kingdom and Australia, but nearly all
are general.

The report proved popular, so we updated it and looked for a publisher to help
disseminate it more widely. Mike MeNeese was instrumental in putting us in touech with the
Human Systems Information Analysis Center (HSIAC). We are grateful to HSIAC for
agreeing to publish this book and preparing it for publication. Comments from Jeffrey A.
Landis, HSIAC Publications Manager and Editor, and Dr. Michael Fineberg, HSIAC Chicf
Scientist, have significantly improved this work. We appreciate their support.

Stephen Croker and Peter Lonsdale provided useful comments and helped assemble
these materials. In addition to the workshop participants listed, we thank Angie Barnhill,
Tim Barnhill, Christina Bartl, Kevin Gluek, Simon Goss, lan Greig, Robin Hollands,
Nieholas Howden, Jim Jansen, Andrew lLucas, Mike McNeesc, Emma Norling, Ralph
Ronnquist, and Colin Sheppard for their help or comments. Brian Logan and Aaron Sloman,
while not listed as authors, did provide matenal that substantially helped in the preparation
of the book. This projcct was primarily supported by DERA (Bedford, UK) under eontraet
LSA/E20307, and also by DSTO (Australia) and later by the (US) Office of Naval Research
(eontracts N000140110243, N000140110547, and NO000140210021). The eonelusions
reported here, however, are solely the responsibility of the authors.

Frank E. Ritter

University Park, Pennsylvania
January 2003

Human Systems IAC SOAR, 2003 X1t




X1v Human Systems IAC SOAR, 2003



List of Figures

Figure 6.1: A functional descnption of Tac-Air Soar and how it uses ModSAF and a perceptual

i ACE SO SRR . . et mtsiansone st e o0 A B A AT B AR S VRS ¥ 64
List of Tables
Table 1.1.Potential Uses of Models in Synthetic Force Environments ..., 2
Table 5.1.Comparison of ArchiteCtUres............ocoeiiieii e, 45
Human Systems 1AC SOAR, 2003 XV




Xvi Human Systems IAC SOAR, 2003



CHAPTER 1

Tasks and Objectives for Modeling Behavior in
Synthetic Environments

There are now numerous models of human bchavior in Synthetic Environments (SEs),
and they scrve a multitude of uses. It is worthwhile considering where and how to tmprovc
thesc models to provice more realistic human behavior. This rcport provides a more recent
review of work following Pcw and Mavor (1998), and provides a detailed source of further
ideas and suggestions. In addition to noting areas where modcls could be expanded to
include more complete performance, we particularly draw thc reader’s attention both to the
importance of the integration of models (and thus their rcuse) and to the usability of models.
We will argue that improved usability (and reusability) is necessary for these models to
achieve their potential. We cxtend Pew and Mavor’s results by examining architectures
(e.g., COGENT, JACK, hybrid architectures) that werc not included or available when Pew
and Mavor compiled their report, and by summanizing several promising areas for further
work that have ariscn recently.

This report reflects the biases and specific expertise of the authors as they attcmpt to
identify a wide range of potential problems and provide possible solutions. Some of the
proposed projects are high risk and not all of the authors agree that these projects can be
accomplished. All agree, however, that if possible, they would be rewarding. Given the
diversity of human behavior, therc remain many issues not covercd here. For example, many
aspects of teamwork are important but not examined here. Most of the systems and
architectures reported herc are continually cvolving. Becausc of the rapid pace of
development in this area, our review may underestimatc the capabilities of these systems
and several of our suggestions may already be incorporatcd in them.

1.1 The Role of Synthetic Forces

There are several commonly acknowledged uscs of cognitive modcls in synthetic
environments. These uses have included at least thc range shown in Tablc 1.1. This is a
wide set. Pew and Mavor (1998) focused on the application of synthctic forces to training
partly because the major applications and successcs of synthetic forces have been in this
domain. Further uscs of synthetic forces have been outlined in other reviews (Computer
Science and Telecommunications Board, 1997; Lucas & Goss, 1999; Synthetic
Environments Managcment Board, 1998).

Human Systems IAC SOAR, 2003 1
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Table 1.1: Potential Uses of Models in Synthetic Force Environments
+ Training lcaders
» Joint and combincd training
» Training other personnel (e.g., support and logistics)
» Testing existing doctrine
» Testing possiblc future procurements
» Testing new doctrine

» Serving as a formal, runnable description of doctrine

The user community for synthetic forces would be better served if all these uses were
supported by a single system or approach. Currently, the models of behavior in these
systems have often been devcloped without a long-term plan, and arc only usable within the
simulation for which they were developed. Historically, few single systems have supported
more than one or two of the uses noted in Table 1.1. This is wasteful and can lead to
different behaviors being taught or used in different simulations when they should be
exactly the same behavior. The use of the Distributed Interactive Simulation (DIS) protocol
for distributed simulation is a step toward integration, but it does not apply to
behavior itself.

While having a single system or approach is highly desirable, there are good reasons
why multiple systems are currcntly used (in addition to a multitude of bad reasons as well).
Perhaps the most important reason why therc arc multiple modcls of behavior is that
existing approaches to modeling cannot support all of the uses in Table 1.1 equally well.
Models that focus on aggregate, or large unit behavior, do not support low-level simulations
very well. Models that predict average bchavior are much less useful for practicing tactics
and procedures. Models that are good for training providc dctailed data that have to be
extcnsively summarized and aggregated to be of use to planncrs. Planners and evaluators,
for example, may find useful data in large simulations such as the Purplc Link cxercise, part
of STOW97 (further information is available from Ccranowicz, 1998, as well as from
www stricomamy.mil/STRICOM/DRSTRICOM/DOCATYS)), although such simulations cannot yet
be convened within an afternoon or even a week to examine how a new platform performs.
This report will makes suggestions on all of these levels, but it does not intend to be
comprehensive.

1.2 Definition of Terms

There are several terms used in this report that have meanings specific to the domain of
behavioral modeling. The term model, for example, will refer exclusively to cognitive
models, and the term “simulation” will refer cxclusively to task simulations. We review
these terms here, starting by introducing synthetic forces. Modular Semi-Automated Forccs
(ModSAF) is briefly explained to providc a common system as a point of reference. We
then define the tcrms we will use with respect to models of bchavior.

2 Human Systems IAC SOAR, 2003
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1.2.1 Synthetic Forces

Synthetic forces exist in military simulations, sometimes alongside real forces that have
been instrumented and linked to the simulation. There arc now synthetic force simulations
covering all of the armed scrvices. Synthetic forces can be separated into two components,
physical and behavioral. The physical aspects represent the movement and state of platforms
(objects) in the simulation, including such aspects as maximum speed and the set of actions
that can be performed in the world. The physical aspects provide constraints on behavior.
Simulations of the physical aspects are fairly complete now for most purposes, although
they remain important in their own nght (Computer Science and Telecommunications
Board, 1997; Synthctic Environments Managcment Board, 1998).

The behavioral aspects of a synthetic force platform determine where, when, and how it
perforins the physical actions, that is, its behavior. Many human and cntity behaviors can be
simulated, such as movement and attack, but behavior has been lcss veridically modeled
than physical performance. The next step to increase realism 1s not only to include further
intelligent behavior but also to match more closely the timing and sequence of human
behavior when performing the same tasks.

1.2.2 Modular Semi-Automated Forces

Modular Semi-Automated Forces (ModSAF) is a system for simulating entities
(platforms) on a simulated battlefield (Loral, 1995). It is perhaps the most widely used
behavioral simulator in military synthetic environiments. The goal of ModSAF is to replicate
the behavior of simulated platforms in sufficient dctail to provide useful training and
simulation of tactics.

ModSAF includes the ability to simulate the most common types of physical platforms,
such as a tank, and external effects on those platforms, like weather and smoke. The terrain
is defined in a separate database, which is shared by other simulators in the same exercise
using the DIS simulation protocol. Multiple platforms can bc simulated by a single
ModSAF system.

The local platforms interact with remote platforms by exchanging approximately 20
different types of information packets. Examples of packet types include announcing where
the platform is located (the other platforms compute whether the originator can be seen),
where radar is being emitted, and where shots are being fired. Thus, the features of the
packets vary. Each simulation is responsible for updating its own position and computing
what to do with the information in each packet, so that a tank does not directly shoot another
tank, for example. Attackers send out projectile packets and the target tank computes that it
would be damaged by their projectilcs.

Some semi-intelligent behaviors are included in ModSAF through a set of about 20
different simple scripts. These scripts support such activitics as moving bctween two points,
hiding, and patrolling.

ModSAF is a large system. It can be compiled into several major versions, including
versions to test nctworks and specific versions for cach service. The terrain databases each
include up to 1 gigabyte of data. In 1999, simulating multiple entities required a relatively
fast workstation (100 MIIz+) with a reasonablc amount of memory (32 MB+).

Human Systems IAC SOAR, 2003 3
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A major problem is usability as ModSAF is large and has a complicated syntax. Users
report problems learning and using it. A better way to provide its functionality necds to be
found or its usability needs to be improved dircctly.

1.2.3 Frameworks, Theories, Models, and Cognitive Architectures

It is common in cognitive scicnce to diffcrentiate between several levels of theorizing
(e.g., Anderson, 1983; 1993, chap. 1) and defining these levels now will help us in the
remainder of this report. Framework refers to the specification of a few broad principlcs,
with too many details left unspecified to be able to make empirical predictions. For
examplc, the idea that human cognition acts as a production system offers a framework for
studying the human mind.

Theory adds morc precision to frameworks, and describes data structures and
mechanisms that at least allow qualitative predictions to be made. For example, the
production system principles presented in Newell and Simon (1972) form a theory of human
cognition.

Models are theories implemented as computer programs or rcpresented mathematically
to apply to specific situations or types of situations. While generally more limited in their
domain of application than theories, modcls typically provide more accurate, quantitative
predictions.

Cognitive architecture has two meanings: (1) specifications of the main modules and
mechanisms underlying human cognition, and (2) the computer program implementing
these specifications. These mcanings are scparate and distinct but usually are used as
equivalent. Cognitive architectures, as proposed by Newell (1990), offer a platform for
developing cognitive models rapidly while keeping the theoretical coherence between these
models intact. These cognitive architectures are often seen as equivalent to Unified Theories
of Cognition (UTC), a way to pull all that is known about cognition into a single theory. In
Appendix B we include brief descriptions of two commonly used cognitive architectures,
ACT-R and Soar.

There exists no generally agreed definition of hybrid architectures. Somc use the term
when a cognitive architecture includes symbolic features (e.g., a production system) as well
as non-symbolic features (e.g., neural nct spreading of activation among memory elements);
others, such as Pew and Mavor (1998), use thc tcrm when two or more architectures of any
kind are combined (e.g., Soar and EPIC). We usc the latter definition here because this type
of hybrid architecture has become morc important and more frequently uscd.

When comparing theoretical proposals, it is essential to kcep in mind the level at which
the proposals were formulated. Typically, a framework will cover a large amount of
empirical regularities without specifying many dctails, whilc a model will cover a small
amount of data with great precision. It is gencrally agreed that models arc more uscful
scientifically than theories or framcworks becausc they make clear-cut predictions that can
be tested with empirical data, and hence, are less amenable to ad hoc explanations (Popper,
1959). Models are, howevcr, harder to creatc and use.
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Chapter 1. Tasks and Objectives for Modeling Behavior in Synthetic Environments

1.3 Summary of Modeling Human and Organizational Behavior

Whilc the reader is likcly to have seen Pew and Mavor’s (1998) Modeling Human and
Organizational Behavior, we briefly rcview it here to provide background for readers not
familiar with it and to provide some useful context. In their book, Pew and Mavor review
the state of the art in human-behavior representation as applicd to military simulations, with
an emphasis on cognitive, team, and organizational behavior. Their book is based on a panel
that met for 18 months and drew extensively on a wide range of rescarchers. It 1s available
as a hardcopy book, as well as online (books.nap.edu/catalog/6173.html). —1

Pew and Mavor look not just at reprcsenting behavior, but also at methods for
generating behavior. They provide a revicw of the uses of models of bchavior in synthetic
environments. They includc a review of the major synthetic environments in use by the U.S.
military. These environments are examples of the range of current and potential uses and
levels of simulation.

Their book provides a useful summary of mtegrated (cognitive) architectures. It is
comprehensive and clear enough that we havc used it to teach undergraduate students. Their
summary includes a table comparing the architectures. We will apply the same table to j
review several additional architectures.

Their book also rcviews the important areas to modeling human bchavior in synthetic
environments. This 1s a very wide range, encompassing nearly all of human behavior. Their
book reviews attention and multi-tasking, memory and leaming, human decision making,
situation awareness, planning, behavior moderators (such as fatigue and emotions),
organizational (small group) behavior, and information warfare (e.g., how the order of
information presentation influences decision making). Their book concludes with a
framework for developing models of human bchavior followed by conclusions and
recommendations. Each of these reviews is clearly written and limited only by the space it is
allowed. The rcviews are quite positive, suggesting that major aspects of behavior arc either
already being modcled, or can and will be modeled within a few ycars. This positive tone is
in stark contrast to a similar review a decade earlier, which could only note opcn questions

(Elkind, Card, Hochberg, & Huey, 1990).

1.4 What Modeling Human and Organizational Behavior Does Well

Pcw and Mavor’s book is a useful and seminal book for psychology and modeling,.
Their book is useful because the reviews it provides, while thcy could be extended, are
unusually clear and comprchensive, covering the full range of relevant behavior. It could
serve as a useful textbook for professionals in other areas to teach them current results and
problems in the areas of psychology and modeling.

Their book is seminal because the authors lay out a complete review of cognition that is
widely usable. While their review 1s similar to Newcll’s (1990) and Anderson and Lebiere’s
(1998) reviews, Pew and Mavor’s review is not situated within a single architecture; the
result 1s a more global and only slightly less-dirccted view.
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The reviews of the models and data to be modeled together, because of their scope and
potential impact, constitutec a call to arms for modelcrs of synthctic forces. The juxtaposition
of the data and ways to model them is enticing and cxeiting. This approach of modeling
behavior will significantly influcnce psychology in general if the modeling work continues
to be successful. Models of synthetic forces in the ncar future will subsumc enough general
psychology data that they will simply represent the best models in psychology.

1.5 Where Modeling Human and Organizational Behavior Can Be Improved

There are surprisingly few problems with Pew and Mavor’s review. However, they do
not review all of the possible regularities of human bchavior. We will add a few additional
important regularitics and provide furthcr arguments to support many of their main
conclusions. They could have refcrenced, for example, the Handbook of Perception and
Human Performance (Boff, Kaufman, & Thomas, 1986) and the Engineering Data
Compendium (Boff & Lincoln, 1988) for a wide-ranging list of existing general regularities
in perception and performance (the latter reference has also been put into a CD-Rom version
as well, see iac.dtic.mil/hsiac/products/cashe/cashe.html). In the area of human decision
making, Dawes’ (1994) review is also valuable. Pew and Mavor do not eite a quite relevant
report on how this type of modeling is also being developed as entertainment (Computer
Science and Telecommunications Board, 1997), and, not surprisingly, they could not rcport
a concurrent similar United Kingdom review (Synthetic Environments Management Board,
1998).

On a high level and early on, they cxplicitly note that they will not review the usability
of behavioral models. We will argue that improved usability is necessary for these models to
achieve their potential.

They do not have the space to review all the integrative (cognitive) architectures. While
it would be unfair to call this book dated at this point in time, there are already a few
architectures worth considering that were not available to them.

They do not dwell on the ability to deseribe human behavior, instead they foeus on how
to generate it. There remains some need to be able to deseribe the behavior before
generating it, which we will take up below.

Finally, they did not havc the space to lay out very detailed projccts to fulfill their
short-, medium-, and long-term goals. We provide a more detailed, but still incomplete, set.

1.6 Structure of This Report

Chapter 2 provides amplifieations, updates, and additions to Pew and Mavor’s list of
psyehological regularities that should be included in models of human behavior. Chapter 3
notes problems integrating models with simulations as well as problems integrating them
with each other to make larger, more complete modcls. Chapter 4 takes up the issues
surrounding usability of behavioral models. Usability of thc modcls themselves was
considered to be outside the scope of Pew and Mavor’s report (1998, p. 10). We will argue
that improving the usability of these models by thcir ereators and other analysts is not only
desirable, but necessary for the suceess of modcling itself. Chapter 5 considers new
techniques and cognitive architectures for modeling human behavior in synthetic
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environments with respect to the aims of the previous two chapters. Chaptcr 6 coneludes
with a hist of projects to address problems identifiecd in Chapters 2, 3, and 4 based on the
tcchniques and architectures in Chapter 5.
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CHAPTER 2

Current Objective: More Complete Performance

There are a wide range of behaviors that have yet to be incorporated into existing
models. Included in this list are numerous additional relevant regularities about human
behavior (see Boff & Lincoln, 1988, for a subset). The question that must be addressed is:
which behaviors are the most important and most accessible to incorporate? We note here
several of the most promising or necessary behaviors to be included next in models of
human performance, based on our experiences and previous work.

The suggestions we make later tend to be based on modeling the individual. Much of
the behavior being modeled currently in synthetic environments is different because it needs
to include small and large groups and is aggregated aeross time or situations. As smaller
time seales and more intricate and fine-grained simulations are developed and used, such as
for modeling urban terrorism, the behavioral issues noted here will beeome more important.

We start with lcarning. While Pew and Mavor include learning as a useful aspeet of
performanee, we believe learning to be essential. We also expand the ease for including
models of working memory, perception, emotions and behavioral moderators, and erroneous
behavior. We then can examine higher-level aspeets of behavior to be eonsidered, starting
with integration of models and ending with information overload.

2.1 Learning

Learning is mentioned as important in several ways by Pew and Mavor (1998).
Learning (i.c., training) is the largest role of the military in peace time (i.c., rehearsal, p. 30),
essential for multi-tasking behavior (pp. 114-115), an important aspect of human behavior
(ehap. 5), and important within groups (chap. 10). We cover learning again here.

Pew and Mavor mention several of the advantages of leamning. There are several
additional advantages that we can emphasize. Tactics are influenced by learning. In
addition, there 1s a home-field advantage: working within your own territory, beeause you
know it, makes additional tacties feasible and provides generally improved performance.
(Working within your own territory would also provide some additional motivation.)

Including learning in models would provide a mechanism for produeing difterent levels
of behavior. Experienced troops, for example, would be different not in some numeric way
in that they react faster (although this is probably true), but in a more qualitative way in that
they know more and use different strategies. LLearning modifies, constrains, and supports the
use of computer interfaces (Rieman, Young, & Howes, 1996); similar effeets may be found
in exploring terrain and 1implementing tactics in new geographic spaces.

Programming -that is, creating the model dircetly—may be too difficult. It may be
easier for models to lcarn behaviors than for these behaviors to be programmed directly.
This argument has been put forward by eonnectionist researchers for some time.
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Theoretical work in this area of learning has direct implications for training within the
military and within schools. Models that learn can be used to understand and optimize
learning (Ohlsson, 1992). If we can program modcls to learn, the behavior and knowledge
that result may be different from the initial knowledge that the system startcd with or from
the expert performance that we currently tcach. This final knowledge may bc useful for
teaching. In the case of photocopying (Agre & Shrager, 1990), for cxample, better strategies
arise through practice but are not valuable enough to teach. In military domains, it may be
useful to find and then to teach the improved strategies that may arise from grossly extended
practice, that is, tactics that are better but that no person has had enough practice to leamn
beforc. At that point, explanation of behavior will also become important to understand why
the new behavior is useful so that it is trusted.

2.2 Expertise

Expert behavior has an important role to play in models of human performance
(Shadbolt & O’Hara, 1997). One of the Western powers’ greatest strengths is training in
depth and breadth. Practice influences speed of processing and error rates, particularly under
stress. If synthetie forces are to be uscd to test doctrine, the effect of training on expertise
must be included.

Expert behavior has been studied extensively in recent years and a great deal is known
about it (Chipman & Meyrowitz, 1993; Ericsson & Kintsch, 1995; Gobet, 1998; Gobet &
Simon, 2000; Hoffman, Crandall, & Shadbolt, 1998). Some essential characteristics of
expertise are highly developed perception for the domain material, selective scarch for
solutions in that domain, and a good memory for domain-related material. In most domains,
problcm-solving behavior (search) differs as well: novices tend to search backward from the
situation to find solutions and experts tend to search forward from the situation to find
solutions (Larkin, McDermott, Simon, & Simon, 1980). Finally, transfer of expertise to
other domains is limited.

Klein and his colleagues (e.g., Klein, 1997) have studied real-time performance in real
settings (as opposed to laboratory settings) in detail, and have essentially found that the
characteristics mentioned above are also critical in thesc situations. A number of rather
extcnsive revicws have been undertaken of Klein’s approach, which is often referred to as
Naturalistic Decision Making (NDM) (e.g., Hoffman & Shadbolt, 1995). A mcthod to clicit
this type of knowledge has been developed by Klein and his associates. It 1s known as the
Critical Decision Method and is described in Hoffman et al. (1998). The specifically real-
timc challcnges of acquiring knowlcdge relating to perceptually cue-rich decision making
arc discussed in a second Defence Evaluation and Research Agency (DERA), United
Kingdom, report by Hoffman and Shadbolt (1996).

Given the fact that it takes a long time to become an expert—the rule of 10 years or
10,000 hours of practice and study is often mentioned (e.g., Simon & Chase, 1973)—thc
size of the dataset has made it difficult indeed to study rcal-time leamning on the road to
expertise. However, real-time leamning in simpler problem-solving tasks has becn studied
and modeling accounts have been provided (Anzai & Simon, 1979; John & Kieras, 1996;
Nielsen & Kirsner, 1994; Ritter & Bibby, 2001). Some of these results may apply to expert
learning in more complex tasks as well.
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While experts vastly outperform non-cxperts in most domains, exceptions to this rule
have been found in domains such as clinical diagnosis, clinical prediction, personnel
selection, and actuarial predictions (Dawcs, 1988). In thesc domains, experts perform only
slightly better than non-cxperts, and typically perform worse than simple statistical mcthods,
such as rcgression analysis. Onc other aspect of bchavior that distinguishes experts from
novices is the ability to recover from errors. An important qucstion is to which category
military diagnosing and prediction belong becausc of the uncertainties involved? And, bascd
on this answer, what can be done (either by providing formal tools or by improving training)
to remcedy this situation and assist error recovery?

The effect of lcarning local environments and strategies (own and opponent’s) must also
be included. Having learned the local terrain probably explains much of the home-field
advantage. How does this lcarning occur?

Within the sub-field of knowledge-engineering there have been considerable efforts to
produce methodologies for the acquisition, modeling and implecmentation of knowledge-
intensive tasks. 1t is a moot point whcther the resulting decision-support systems arc
cognitively plausible. Nevertheless, these methodologies now provide powerful ways of
constructing complex systems that cxhibit task-oriented behavior. To this end, anyone
engaged in engineering large-scale synthetic environments should look at the principles laid
down in the most recent of this work. The most accessible source is probably Schreiber et al.
(2000).

2.3 Working Memory

Central to all questions about human cognition and performance is the role of working
memory. Working mcmory is implicated in almost all aspects of cognitive performance
(Boff & Lincoln, 1986, Scc. 7; Just & Carpenter, 1992; Newell & Simon, 1972; Wickens,
1992). It is widely agrced that limitations of working memory are a major determinant of
limitations of cognitive performancc. Definitions of working memory are varied but for
present purposes we can take it to rcfer to the mechanisms that maintain and provide access
to information created or retrieved during the performance of a task.

Modem approachcs to the psychological study of human working memory often take as
their starting point the famous paper by Miller (1956) and argue that peoplc can retain only
around “7 +/- 2” items in short-term memory. Later work has tended to revisc that estimatc
downwards, towards three to four items of unrclated information (Crowder, 1976; Simon,
1974).

A more recent and influential linc of work by Baddeley (1986, 1997) presents working
memory as a dual system for the rehearsal of information, consisting of (1) a phonological
loop, that contains approximatcly 2 scconds of verbalizations, for the rehcarsal of
phonological, acoustic, or articulatory information (e.g., useful for repeating a phonc
number until you dial it); and (2) a visual-spatial scratchpad, with a smaller and lcss-
determined capacity (c.g., uscful when scarching for an object that you have just seen), to
play an analogous role for the maintenancc of pictorial and spatial information.
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Other approaches within expcrimental psychology place more emphasis on the role of
working memory in both storing and manipulating temporary information (Daneman &
Carpenter, 1980; Just & Carpenter, 1992). An important recent cxtension to the notion of
working memory comes from the study of expertise, where Ericsson and Kintsch (1995)
argue that after extensive practice in a particular domain pcople can, through specialized
retrieval structures, use long-tcrm memory for the rapid storage of temporary information
(i.e., long-term working memory).

A rccent book (Miyake & Shah, 1999) reviews a range of current approaches to the
modeling of working memory, although many of the models do not have the explicitness
and generality needed to support the simulation of human performance in complex tasks. Of
those that do, their view of working memory varies widely. Some, such as ACT-R
(Anderson & Lebiere, 1998) and CAPS (Just & Carpenter, 1992), consider working memory
not as a scparatc structural entity but rather as an activated region of a larger, more general
memory system, in which the limitations of working memory derive from a limited total
quantity of activation. Just and Carpenter (1992), and more reccntly ACT-R models, have
extended that view to the modeling of individual differences in working memory where
different people are assumed to have different maximum quantities of available activation
(Daily, Lovett, & Reder, 2001; Lovett, Daily, & Reder, 2000). A number of these ideas are
put togcther by Byrne and Bovair (1997) who modeled (in CAPS) the way that a class of
performance errors, in which people forget to complete subsidiary aspccts of a task (such as
removing the original from a photocopier), is affected by working memory load.

In contrast to these resource-limited models, Soar (Laird, Newell, & Rosenbloom,
1987; Newell, 1990) imposes no structural limitation on working memory. Using Soar,
Young and Lewis (1999) explore the possibilities of working memory being constrained
not by physical resources but by functional limitations and by specific kinds of similarity-
based interference.

In summary, the current position is that human performancc is known to be highly
dependent on working memory and working memory load, and to be susceptible to factors
such as individual differences (Just & Carpenter, 1992), distractions (Byme & Bovair,
1997), emotion and stress (Boff & Lincoln, 1988), and expertise (Ericsson & Kintsch,
1995). Many existing models of human performance (e.g., as reviewed in Pew & Mavor,
1998) do not directly model the role of working memory. Models exist (Miyake & Shah,
1999), and some approaches to cognitive modeling (ACT-R, CAPS, Soar) have potential for
improving predictions of human pcrformance in realistic task situations by including more
accurate theories of memory. There remains a need for the investigation and development of
morc explicit and complete models, with broader scope, of the role of working memory in
human performance.

2.4 Emotions and Behavioral Moderators

Emotion, affect, motivation, and other behavioral moderators are increasingly being
seen as factors that can and often do influence cognition. This view has received attention
among a range of computer scientists and psychologists. Pew and Mavor (1998, chap. 9) lay
out an initial case for including emotion as an internal moderator of behavior. The British
HCI Group sponsored a one-day meeting on “Affective Computing: The Role of Emotion in
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Human Computer Interaction” that attracted 70 people to University College, London
(Monk, Sassc, & Crerar, 1999). Picard’s (1997) recent book providcs a useful review of
cmotions and computation in general. Sloman’s (1999) review of thc book and Picard’s
(1999) responsc arc usctul summaries. A further case is also made in the section on the
Sim Agent Toolkit. We present here an additional argumcnt for including a model of
emotions and bchavioral modcrators in modcls of synthctic forces, note two potential
problcms with existing models, and sketch an initial theory.

2.4.1 Further Uses of Emotions and Behavioral Moderators

Models of emotions and behavioral moderators may be necessary for modeling non-
doctrinal performance such as insubordination, fatigue, errors, and mistakes. Many authors
have also notcd the role of emotion in fast, reactive systems (Picard, 1997, provides a uscful
overview). Individual differcnces in emotions may be relatcd to personality and differences
in problem solving. That is, the range of cmotions may be best explained as an interaction
that arises bctwcen task performance and situation assessment and an agent’s likes, desires,
and personal cognitivc stylc. An argument is starting to be put forward that changcs in
motivation based on temporally local mcasurcs of success and failure may hclp problem
solving (Belavkin, 2001; Belavkin & Ritter, 2000; Bclavkin, Ritter, & IElliman, 1999).

2.4.2 Working Within a Cogpnitive Architecture

Emotions arise from structures related to cognition and should be closely related to and
based on cognitive structures. All of the argumcnts for crcating a unificd theory of cognition
(Anderson, Matcssa, & Lebiere, 1998; Newcll, 1990) also apply to creating a unified theory
of emotion as wcll. The effects of emotions and othcr behavioral moderators on cognition
arc presumably not task-specific, so their implementation belongs in the architecture, not in
the task knowledge.

Theonies of emotions should thus be implemcnted within a cognitive architccture. This
will allow them to realize all the advantages of bcing within a cognitive architccture,
including being reusable and being comparcd to and incorporated within othcr models.
Some modcls of emotions have bcen built within a cognitive architecture (Bartl & Dorner,
1998; Belavkin, Ritter, & Eliman, 1999; Franceschini, McBridc, & Sheldon, 2001; Gratch
& Marsella, 2001; R. Joncs, 1998; Rosenbloom, 1998). Being crcated within an
information-processing model has required them to be more specificd than previous
thcorics. Being part of a modcl that performs the task has also allowed them to makc
more predictions.

2.4.3 A Sketch of a Computational Theory of Emotions

An important aspect of cognition is to process sensory information, assign mcaning to it,
and then decide upon a plan of action in rcsponse. This is a rcal-time proccss in which new
scnsory information arrives continuously. This view is similar to the view put forward by
Agre and Chapman (1987) about representationless thinking. The plan must therefore bc
dynamically reconfigurablc and will often be abandoned in favor of a better plan midway
through its cxccution. Elliman has a spcculative vicw of the rolc of cmotions in cognition,
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similar to Rasmussen’s (1998) stepladdcr framework of behavior, which makes thc
following assumptions:

e The amount of scnsory data available at any moment is too large for attention to be
given to more than a small fraction of the data.

e The conscious consideration of the results of perception is an cxpensive proccss in
terms of thc load on ncural hardware and also time-consuming.

e Most sensory processing is unconscious in its early stages in order that expensive
conscious processcs need consider only the results of perception. These results
might include labcled objects with a position in space, for example “a tank moving
its turret in that clump of trees.” Conscious processes might well add further detail
such as the type of tank and the range of its gun.

e Attentional mechanisms are needed to direct the limited high-level processing to the
most interesting objccts. These may be novel, brightly colored, fast-moving, or
potentially threatening.

e Planning is an especially heavy computational process for the human mind and one
that is difficult to carry out effectively under combat conditions. (Perhaps the best
way to explain why military doctrine is useful is that it distills the best generic
practice and trains the soldier to behave in a way that might well have been a chosen
and planned behavior if the individual had the time and skill to formulate the action
himself. The danger is that no doctrine can envisage all scenarios in advance and, on
occasion, the use of doctrine in a rigid manner may be harmful.)

¢ From an evolutionary pcrspective this system of unconscious processing of sensory
input, attentional mechanisms, and cognitive planning (together with specch-based
communication) is a masterstroke of competence for survival. However, it has one
crippling disadvantage—it is too slow to react to immcdiate and sudden attack.

Rapid reaction to possible threat without the time for much cognitive processing is
clearly of huge value. In this framework emotion can be seen as kind of labeling process for
sensory input. Fear particularly fits this pattern and is a label that causes selectcd sensory
input to literally scream for attention. For this process to work rapidly it needs to be
hardwired differently than higher-level cognitive processes. There is strong evidence that
the amygdala is intimately involved in the perception of threat and able to trigger the
familiar sensation of fear (c.g., Whalen, 1999). If this organ of the brain is damaged,
individuals may find everyday events terrifying while not perceiving any need for alarm in
life-threatening situations.

This rapid, emotive rcsponse to sensory data is relatively crude and prone to falsc
alarms. Reactive behavior is triggered that may be involuntary, for example, thc startlc
reaction and physiological changes due to the release of noradrenalin. After the reaction
response, it takes time for cognitive processes to catch up and make a more informed
assessment of the situation and actual threat. If this emotive, reactive stimulation is cxcited
in a chronic manner then susceptible individuals may become less effective, with impaired
ability to think and plan clearly. Any kind of anxiety is a form of stress. Because individuals
have a finite capacity for absorbing it, excessivc stress results in fatigue.
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2.5 Errors

Ideally, military behavior is normative, that 1s, what is done 1s what should have been
done. Human behavior does not always match the normative ideal of military behaviors.
One of the most important aspeets of human performanee, which has often been overlooked
in models of behavior and problem solving, is errors (although see, for example, Caceiabue,
Decortis, Drozdowiez, Masson, & Nordvik, 1992; Freed & Remington, 2000; Freed, Shafio,
& Remington, 1998). There is a econsensus building about the definition of errors—for most
people an error is something done that was not intended by the actor, that was not desired,
and that placed the task/system beyond aeceptable limits (e.g., Senders & Moray, 1991).

Part of the reason for omitting errors from models of behavior is the fallacy that they are
produced by some special error-generating mechanism that ean be bolted on to models onee
they are producing correet behavior on the task at hand. Often, however, the actions that
precede errors would have been judged to be correet if the eircumstanees had been slightly
different. In other words, as Mach (1905/1976) observed, knowledge and error both stem
from the same souree.

Evidence shows that noviees and experienced personnel will often make the same errors
when exposed to the same cireumstanees. The difference lies in the ability to notice and
recover from these errors. Experienced personnel are more suecessful at mitigating errors
before the full econsequences arise. In other words, it is the management of errors that 1s
important and needs to be trained (Irese & Altmann, 1989), rather than vainly trying to
teach people liow to prevent the inevitable.

2.5.1 Training About Errors

In any complex, dynamic environment, such as a nulitary battlefield, the consequenees
of uncorrected errors are potentially disastrous. While normally a string of mistakes is
required to ereate a disaster, the rapid pace of the battlefield and adversaries allows single
mistakes to become more eatastrophie.

There is, therefore, a real need to learn how to manage errors in an environment in
whieh the eonsequenees are less severe. An advantage of using synthetic environments is
that comparative noviees ean experiment in unfamiliar situations, with restrietions
approximating the real environment in time, space, enemy capabilities, and so on, but with
the knowledge that the consequences of any errors ean be recovered. In addition, multiple
seenarios can be played out over a compressed time period, thereby providing the novice
with a varicty of experiences that would take many years to aceumulate through exposure to
situations in the real world. This ean be a great training aid, literally giving years of
experience in far less time. When novices were trained in aireraft eleetrical-system
troubleshooting using a simulated system, they were able to aequire years of experienee in
months because the tutor let them praetiee just their diagnostie skills without practicing their
disassembly skills (Lesgold, Lajoie, Bunzon, & Eggan, 1992).
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2.5.2 Models That Make Errors

There are several process modcls complete enough to make crrors, depending to some
degrce on the definition of error. Models that include errorful behavior cxist in EPAM
(Feigenbaum & Simon, 1984; Gobet & Simon, 2000), ACT-R (Anderson, Farrell, & Sauers,
1984; Anderson & Lebiere, 1998; Lebiere, Anderson, & Redcr, 1994) and Soar (Bass,
Baxter, & Ritter, 1995; Howes & Young, 1996; Miller & Laird, 1996), although each
generates errors in diffcrent ways and at different levcls. Fewer models cxist that model
error recovery, although this is clearly the next aspect to model.

A problem with models and humans is that the erroneous behavior is often task-specific;
given a new task, both models and humans might not generate the same behavior. In other
words, the erroneous behavior arises as a result of the combination of human, technological,
and organizational (environmental) factors. Vicente (1998) dclineates some of thc problems
in this area.

There are various taxonomies of errors that could be incorporated into models of
performance. There are also other constraints that reduce the level of pcrformance that are
worth exploring, including working memory (Young & Lewis, 1999), attention, and
processing speed due to expertise.

2.6 Adversarial Problem Solving

Adversarial problem solving is different from simple problem solving and makes
additional requirements for modeling behavior in synthetie environments. Planning is not
done within a statie environment, but done in an environment with active adversaries.

Rescarch on adversanal problem solving (e.g., Chase & Simon, 1973; de Groot
1946/1978; Gobet & Simon, 2001; Newell & Simon, 1972) has identificd several aspccts of
cognitive behavior that have been shown to gencralize to other domains, including the
military domain (Charness, 1992). A key result is that playcrs do not follow a strategy such
as minimax but that they satisfice (Simon, 1955), that is, they satisfy themselves with a
good-cnough solution, which can be far from the optimal solution (dc Groot & Gobct, 1996;
Gobet & Simon, 1996a). This satisficing behavior ean be explained by the proecessing and
capacity limits of human eognition, such as the timc to learn a new ehunk or the capacity of
short-term memory (Newell & Simon, 1972).

A second, related aspect is that a player’s search is highly selective: only a few branches
of the search trce are explored. The choiee of subspace to search seems to be constrained by
pattcrn-recognition meechanisms (Chase & Simon, 1973; Gobet, 1998; Gobet & Simon,
1996a). A consequence is that misleading pereceptual eues may result in the exploration of
an incorrect subspace. For example, Saariluoma (1990) reported that chess masters found a
suboptimal solution when the features of the position led thcm to look for a standard,
although inferior, subspace. The consequence for understanding eombatant behavior is that
pattern recognition may influence the course of action chosen as much as the detail of the
way the search is carried out. In fact, de Groot (1946/1978) did not find differenees in the
macrostrueture of search of ehess players at different skill levels.

A third important result is that chess players re-investigate the same sequence of actions
several times, interrupted or not by the analysis of other sets of actions. Dc Groot (1946) has
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called this phenomenon progressive deepening. It 1s related to the selective search shown by
experts in other areas (Charness, 1991; Ericsson & Kintsch, 1995; Gobet & Simon, 1996a;
Hoffiman, 1992). De Groot and Gobet (1996) propose that progressive deepening is due both
to the limits of human cognition (limited capacity of short-term memory, slow encoding
time in long-term memory) and that with this searching behavior, information gathered at
various points of the seareh may be propagated to other points, including previously visited
points (this eould not be done with a search behavior such as minimax).

These features of cognition, identified in adversanal problem solving, also occur in
Rapid Deeision Making (RDM) in domains such as firefighting, eombat, and chess players
in time-trouble. Interestingly, the modecl developed by Klein and his colleagucs (see Klein,
1997, for a review) singles out the same features as the model developed by Chase and
Simon (1973) to explain expert chess-playing: pattern recognition, selective search, and
satisfieing behavior.

While some aspeets of adversarial problem solving are well understood, others have yet
to be studied in any depth. Such aspeets inelude the way the function used to evaluate the
goodness of a state (the evaluation function) changes as a funetion of time, the link between
the evaluation funetion and pattern recognition, or the learning of domain-speeific
heuristies, which all have direet implieations for eombat behavior.

Relatively little research has been done on how players take advantage of the thinking
partieularities of their opponent, in partieular, by trying to outguess him or her. Jansen
(1992) offers intcresting results. He has developed a computer program that takes advantage
of some features and heuristies of human eognition in simple chess endgames, such as the
tendeney, in human players’ search, to avoid moves that lead to positions with a high-
branching factor, and to prefer moves that lead to forced replies. Using these features and
ineorporating them in its evaluation function, the program was able to win faster (in won
positions) or to avoid defeat (in lost positions) more often against human players than by
using a standard alpha-beta search. In principle, such an approach eould be extended to
include both skill-related and individual differences in synthetic environments.

In eomparison to pereeption and memory in games, relatively little computer modeling
of human behavior has been done with adversarial problem solving (if one exeludes pure
Artifieial Intelligenee [Al] research, in whieh adversarial problem solving has been a
favorite subject of research). One may mention the previous work of Simon and colleagues
(Baylor & Simon, 1966; Newell, Shaw, & Simon, 1958), and the programs of Pitrat (1977),
Wilkins (1980), and Gobet and Jansen (1994). All of these programs were created for chess
and most eover only a subset of the game.

There are implications of adversarial search vanation for performance (i.e., how well a

planner models an opponent). This would be a natural place to model various levels of
experience in opponents.

2.7 Variance in Behavior

Ineluding more variety in how a model performs a task is one of the next steps for
improving the realism of synthetic forces. Currently, many models will execute a task the
same way every time and for every equivalent agent. In the real world, this is not the ease.
The choice of strategies and the ordering of substrategies will vary aeross agents and vary
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for a given agent across timec. This lack of variance makes adversaries and allies too
predictable in that they always do thc same thing.

Including variance in behavior is also necessary when behavior is less predictable.
Novices, with less knowledge, have greater variance in behavior (Rauterberg, 1993). In the
past, variancc was intentionally suppressed in simulations becausc it was thought that
variance in real behavior was suppressed through doctrine and training. Accounting for
variety in bchavior is of increasing importance when modeling less-prepared and less-
trained forces, and now for improving model accuracy as vanance in real behavior
1s admitted.

Variance in behavior is also important when modeling non-combatant agents, such as
white forces and civilians. These agents may be producing their behaviors deterministically,
but the determiners are often hidden from other agents, making them appear relatively
unpredictable. Finally, the ability to model a variety of behaviors is necessary for
sensitivity analysis.

Variance will arise out of several factors. It may arise from different levels of expertise,
which is covered above. It may arise from different strategics, which will require including
multiple strategies and noting where orders are less likely to be followed and when panic
results in orders being ignored. Variancc may also arise as a type of error, such as applying
a right action in the wrong circumstances.

In any case, variance in agent behavior in synthetic environments particularly needs to
be included in training materials. Humans are very good pattern-recognizers—although they
do not always look for or know the right pattcrn—and will take advantage of models that do
not vary their behavior. The real opponents may not be so predictable.

2.8 Information Overload

Problems with information overload have been noted numerous times (e.g., Woods,
Patterson, Roth, & Christoffersen, 1999). Hoffman and Shadbolt (1996) provide a review of
work on information overload in real-time, high-workload military contexts. They also
discuss challenges that information ovcrload raises for knowlcdge acquisition in the context
of synthetic forces environments.

Problems resolving clutter, workload bottlenecks, and finding significance in incoming
data, are not yet problems for many models of human performance. Currently, most
cognitive and synthetic force models do not face information overload. The situation has
more typically been of a model seeing only a limited set of information and knowing how to
perform only one or a few tasks.

In the near future, thc models will have morc complex simulated eyes as well as more
knowlcdge to interpret the eyes’ input. This will lead to more incoming information with a
more difficult problem of deciding which objective to pursue next and how to choose the
best strategy based on a larger set of knowledge and perceptual inputs. We will also find
that models will start to have troublc with information ovcrload, cluttcr, and situation
assessment. Their tactics in this arca will be particularly important when thcre are time
pressures, which are common in synthetic environments and the worlds they model.
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There are theoretical and praetieal problems integrating models with simulations and
with other models. The problems can appear to be simply software issues, but deeper
theoretieal 1ssues often go hand-in-hand with these problems. We thus note a few of these
problems in getting models to interact with simulations as well the basic problem of
aggregating models.

3.1 Perception

At least sinee de Groot’s early work (1946), perception has been deemed to play an
essential role in eognition. Neisser (1976, p. 9) aptly summarizes it as “pereeption is where
eognition and reality meet.” This point of view has been buttressed in reeent years with the
emphasis given by Nouvelle Al (e.g., Brooks, 1992), which is based on reaetive
architectures, pereeptual mechanisms, and on their coupling with motor behavior.
Neuroseienee (e.g., Kosslyn & Koenig, 1992) teaches that, due to evolutionary pressure, a
large part of the brain deals with pereeption (mainly vision); henee, an understanding of
pereeption is essential for understanding the behavior of eombatants.

Pereeption-based behavior offers a series of advantages: it is fast, attuned to the
environment, and optimized with respeet to its ecoupling with motor behavior. However, its
disadvantages inelude its tendeney to be stereotyped and to lack generalization. In addition,
from the point of view of the modeler, it is a difficult behavior to simulate well. This is in
part due to the faet that low-level pereeption is still poorly understood (Kosslyn & Koenig,
1992), although reeent progress in roboties and agent behavior give examples of suceessful
implementation of basie pereeptual meehanisms for use by eognition (e.g., Brooks, 1992;
Zettlemoyer & St. Amant, 1999; and St. Amant & Riedl, 2001).

Pereeption may be seen as the common ground where various aspects of eognition meet,
ineluding motor behavior, eoneept formation and categorization, problem solving, memory,
and emotions. In several of these domains, computer simulations illustrating the role of
perception have been developed.

Brooks (1992) and others have investigated the role of pereeption in motor behavior
with simple inseet-like robots. The link between eoneept formation and (high-level)
pereeption has been studied using the EPAM architecture (Gobet, Richman, Staszewski, &
Simon, 1997). The role of pereeption in problem solving has been studied using Chunk
Hierarechy and REtrieval Structures (CHREST), a variation of EPAM (Gobet, 1997; Gobet
& Jansen, 1994) that also aecounts for multiple memory regularities. Eye movements are
simulated in detail in CHREST but not the low-level aspeet of pereeption. (We will deal
with the relation between problem solving and pereeption in See. 3.2.)
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A more detailed simulation of low-level aspects of perception, such as feature
extraction, is an important goal for thc future of research on the relation of perception to
othcr aspects of cognition. In addition, little work has been done on modeling perception in
dynamically changing environments and on the effects of stress, emotion, motivation, and
group factors on perception.

It is useful to separate perception from cognition in modeling human performance. The
border between the model of the person and their environment can (arguably) be drawn at
the boundary between cognition and perception, with perception belonging to a large extent
in the environment model. This may bc true for psychological reasons (Pylyshyn, 1999). It
is also true to support tying models to simulations and for use of the resulting knowledge by
cognition in problem solving (Ritter, Baxter, Jones, & Young, 2000). The typical acts
performed by perception and motor action, such as determining the objects in view, their
shapes and sizes, and then manipulating them, are most easily performed where the objects
reside. This forces the implementation of theories of interaction into the simulation language
instead of the modeling language.

It would be useful to have realistic stochastic distributions of differences in perception
among individual agents, and also the ability to augment perception with instruments from
field glasses to night sights. These devices could be modeled as plug-ins to the perception
model. Models of perception in synthetic environments are typically simple, being a
function of distance from observer to objcct (e.g., if there is a clear line of sight and the
absence of cover and smoke). On the other hand, human vision changes in important ways
with the ambient level of light and with the part of the retina on which an image falls. The
edges of the retina are particularly sensitive to the detection of a moving object, while the
fovea has the best resolution for identifying distant objects and is most sensitive to color.
The distance at which an object can be seen depends on its brightness, its size, and its
contrast to the background as well as the permeability of the air to light. Thus, a detonation
will be visible from a much greater range than a moving tank, which in turn will be much
easier to spot than a motionless, camouflaged soldier.

Situation awareness is a term that is still the subject of much debate in the human
factors and ergonomics communities (e.g., see the Special Issue of Human Factors, Volume
37, Issue 1). Pew and Mavor (1998) consider situation awareness to be a key concept in the
understanding of military behavior. Wc agree, but also believe that situation awareness
should be modeled at a finer level of detail than is currently often done (see Pew & Mavor,
1998, chap. 7, for a current review).

3.2 Combining Perception and Problem Solving

Pew and Mavor (1998) note that an important constraint on problcm solving is
perception, but do not explore this in detail. As mentioned in our discussion on expertise,
perception plays an important role in skilled behavior—experts sometimes literally see the
solution to a problem (de Groot, 1946/1978).

We may use Kosslyn and Koenig’s (1992) definition: higher-lcvel visual processing
involves using previously stored information; lower-level visual processing does not involve
such stored information and is driven only by the information impinging on the retina. We
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foeus here on higher-level pereeption and, thus, we will not consider mechanisms used for
finding edges, computing depth, and so on.

Neisser’s Cognition and Reality (1976) deseribes what is often referred to as the
perceptual cyele. This approach underpins a vast amount of the cognitive engineering
literature and research. At its simplest, the perceptual eyele is a eyele between the
exploration of reality and representing this reality as sehemas (in the general sense).
Schemas direet exploration (pereeptual, haptie, ete.) that involves sampling the objeet
(looking at the real world), which may alter the object, which means that the schemas have
to be modified. (See Neisser, 1976, p. 21, or p. 112 for a more complete deseription.) This
work suggests that an important aspect of behavior has been missing from many theories
and models of problem solving that have not included pereeption.

It is natural that researchers have attempted in recent years to eombine perception and
problem solving in artificial systems. One ecan single out three main approaches: roboties,
problem-solving architeetures ineorporating pereeption, and perceptual architeetures being
extended to problem solving.

In roboties, Nouvelle Al has attempted to build robots able to carry simple problem-
solving behavior without explieit planning by linking sensor and motor abilities tightly (e.g.,
the behavior-based architceture of Brooks, 1992). Robots based on this approach are
exeellent at obstacle-avoiding behavior. It is, however, unelear how far this approach can be
extended to more complex problem solving without incorporating some sort of planning.

Including pereeption in behavioral models is a useful way to add natural eompeteneies
and limitations to behavior. Pew and Mavor note that there are few models of how
perception influences problem solving. Their summary can be extended and revised in this
area, however. We have seen in existing cognitive models (Byrne, 2001; Chong, 2001; de
Groot & Gobet, 1996; Gobet, 1997; Jones, Ritter, & Wood, 2000; Ritter & Bibby, 2001;
Salvueei, 2001) and in Al models (Elliman, 1989; Grimes, Picton, & Elliman, 1996; St.
Amant & Riedl, 2001) that pereeption is linked to and ean provide behavioral competencies
and restrictions on problem solving. While Pew and Mavor note that they are unaware of
any attempt in Soar to model the detailed visual pereeptual processes in instrument seanning
(Pew & Mavor, 1998, p. 181), such models exist (Aasman, 1995; Aasman & Miehon, 1992;
Bass et al., 1995), and some are even cited by Pew and Mavor (1998, p. 95) for
other reasons.

The Soar model reported by Bass et al. (1995) scans a simple air-traffic control display
to find wind veloeity. The model learns (ehunks) this information and uses it and the display
to track and land a plane through airport air traffie control. The model then refleets on what
it did to eonsider a better course of action. This model shows tentative steps towards using
Soar’s learning mechanism for situation leaming and assessment based on information
acquired through aective pereeption (see Pew & Mavor, 1998, p. 197). Modeling visual
cognition within Soar is ongoing at the University of Southern California’s Information
Scienees Institute (USC/IST; Hill, 1999) and at the Pennsylvania State University.

The EPAM architecture (Feigenbaum & Simon, 1984), the initial goal of which was to
model memory and pereeption, has recently been extended into a running produetion system
(Gobet & Jansen, 1994; Lane, Cheng, & Gobet, 1999). The chunks learned while interaeting
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with the task environment can later be used as conditions of productions. The same chunks
are also used for the creation of schemas and for directing eye movements.

Rccently, there have becn scveral attempts to move the perception component from
models into the architectures, regularizing and generalizing thc results in the process.
Prominent cognitive architecturcs Soar and ACT-R have bcen extended to incorporate
perccptual modules, and PSI also has a perceptual module. With Soar, a perceptual module
is available based on EPIC (Chong & Laird, 1997) and anothcr based looscly on a spotlight
theory of attention (Ritter et al., 2000). With ACT-R, two perceptual modules have been
developed independently: the Nottingham architecture (Ritter et al., 2000) and ACT-R/PM
{based on but also extending EPIC; Byme, 1997, 2001). This approach creates situated
models of cognition, that is, models that interact with (simulations of) the real world.

None of these approaches has been tested with complex, natural, and dynamically
changing environments. The robotics approach is the only one currently demonstrated to
cope with natural, albeit rather simple, environments. The two other approaches can interact
with computer interfaces that are complex and dynamic (e.g., Salvucci, 2001).

3.3 Integration of Psychology Theories

A glance at almost any psychology textbook reveals that the study of human cognition
is conventionally divided into topics that are presented as if they have little to do with each
other. There will be separate chapters on attention, memory, problem solving, and so on.
However, the range and variety of tasks undertaken by people at work, and also those
tackled by synthetic agents, typically require the application and interplay of many different
aspects of cognition simultaneously or in close succession. Interacting with a piece of
electronic equipment, for example, can draw upon an agent’s capacity for perception,
memory, learning, problem solving, motor control, decision making, and many more
capabilities. The question of how to integrate these different facets of cognition is therefore
an important one for the simulation of human behavior.

Integrating theories across different topics of cognition is an issue that has rarely been
addressed directly and provides an important focus for future work. Agents in synthetic
environments (e.g., R. Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999) implicitly
integrate multiple aspects of behavior. What research exists has been carried out,
appropriately enough, under the heading of unified theories of cognition using architectures
such as Soar and ACT-R. Soar offers a promising basis for such integration. Its impasse-
driven organization enables it to access different arcas of cognitive skill as the need artses,
and its learning mechanism (which depends on cognitive processing in those impasses)
enables relcvant information from the different areas to be integrated into directly applicable
knowledge for future use. ACT-R also integrates multiple components.

3.4 Integration and Reusability of Models

Integration of theorics can be also viewed as intcgration of models as software,
sometimes called reuse. It has been true for years that reuse i1s important; this is true for two
fundamental reasons. First, reuse saves effort. In the field of object-oriented software
development, figures are often quoted for the costs associated with development with reuse
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in mind. The cxtra time spent in nitial development is something like 20%. When the eode
is reused, an applieation can be ereatcd in 40% of thc development time for new eode.
Seeond, and pcrhaps more importantly in these domains, rcuse ensures consistcncy across
simulations and timgc, particularly important when creating unified theories of cognition.

There are also serious problems restricting the reusc of cognitive modcls. Cognitivc
models are not generally reused, even when they have been created in a cognitive
architecture designed to facilitate their reuse. There are exccptions. Pearson’s Version 2 of
his Symbolie Concept Acquisition model and its cxplanatory displays is an cxception
(availablc at ai.cees.umich.edu/soar/soar-group.html). Other exceptions inelude PDP toolkits
such as O’Reilly’s PDP++ (www.cnbe.cmu.edw/PDP++/PDP++.html). But, overall,
cognitive modeling does not have the level of system rcusc and visual displays that the Al
and expert systems eommunities now takc for granted. This problem 1s becing noticed by
others as well (Wray, 2001).

There are some examples of reuse that should be cmulated and cxpanded. ACT-R now
maintains a library of existing models (act.psy.cmu.edu). We have found that thc merc
existence of a library of student models (www.nottingham.ac.uk/pub/soar/nottinghany/) has
lcd to increcasingly better student projeets. Work by Young (1999) on building a zoo of
runnable cognitive models is another cxample of such use done broadly. There is little
reason to believe that thesc results would not scale up. These improvements to the modeling
environment have helped move learning Soar (Ritter & Young, 1999) and ACT-R
(Anderson & Lebiere, 1998) from being a lengthy apprenticcship to being something that
can be taught in undergraduatc eourscs.

Sueh integration is illustrated most clearly in a modcl of natural language sentenee
processing (Lcwis, 1993), in which lexical, syntactie, semantie, pragmatic, and domain-
speeifie knowledge arc brought togcther in learned rules (Soar chunks) to guidc language
comprehension. Probably the model that has gone furthest in demonstrating this kind of
integration is the cognitive model of the NASA Test Director, the person responsible for
coordinating the preparation and launeh of the spaee shuttle. Nelson, Lchman, and John
(1994) deseribe a Soar model of a fragment of the Test Director’s performanee, whieh
ineorporatcs problcm solving, listening to audio communications, understanding language,
speaking, visual scanning (through a procedurc manual), page turning, and more. Such
integrated models are also starting to be ereated in ACT-R (Anderson & Lebiere, 1998).

Integration of a slightly different flavor—aeross capabilities rather than across textbook-
like topics of cognition— is illustrated in another Soar model, this one being of exploratory
learning of an interaetive deviee (Rieman et al., 1996). At first glanee, it might seem that
exploratory learning is not especially relevant to thc human bchavior that is, apart from
questions of training, the main foeus of this report. Fighter pilots and tank eommanders are
highly traincd and expert individuals, and presumably do not Icarn significantly from further
experiences. [However, component skills such as comprchending a novcl situation, looking
around to discover relevant options, and assessing a course of aetion—which are
fundamental componcnts of cxpert skill—are also preeisely what arc required for
exploratory lcarning and reactivc planning in uneertain environments.

Rieman ct al. (1996) dcscribe the IDXL model, which models an expericneed computer-
user employing cxploratory learning to discover how to perform speeified tasks with an
unfamiliar softwarc application. IDXL searches both the cxtcrnal spacc provided by the
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software and the intcrmal spacc of potentially relevant knowlcdge. It seeks to comprehend
what it finds and approximates the rationally optimal strategy (Anderson, 1990) for
exploratory search. A typical sequence of interrelated capabilities would be for the model
first to learn how to start a spreadsheet program from external instruction; then to use that
new knowledge as a basis for analogy to discover how to start a graph-drawing package;
and then to build on its knowledge by learning through exploration how to draw a graph.
The model works with a limited working memory, employs rccognition-based problem
solving (Howes, 1993), and acquires display-based skill (Payne, 1991) in an interactivc,
situated task.

These problems of reusability are even more acute when creating models for synthetic
environments because of the size and type of models. This is true for several rcasons: the
knowledge is more extensive and exact than many laboratory domains previously studied.
The models must interact with complex, interactive simulations. The work may be
classified, which will add an additional constraint in hirtng someone with multiplc skills.
Scenarios may simulate hours of behavior rather than the minutcs of typically modeled
laboratory tasks. This represents a lot of knowlcdge, and thc timeframe can make
troubleshooting more difficult. Finally, there are many cases where an explanation facility is
required to explain the model’s behavior for other observers.

3.5 Summary

A framework to assist with integration and reuse will have to be developed. It should be
common in the sense that the appropriate simulation entities and analysis tools would be
available, and for a given application or analysis, developers would plug them together. The
DIS protocol and ModSAF are being used in this way to some extent, but they are hard to
use and do not support the desired level of ease of use nor the level of cognitive realism.
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In addition to improving the match of synthetic forccs to human behavior itself, there
are scveral aspects of thcse modcls that must be improved so they can be dcveloped, tested,
and uscd by modelers and analysts. A large amount of time is often required to build models
and understand their behavior, more than we believe should be necessary. The difficulties of
simply creating and manipulating models of behavior can preclude us from spending more
time developing and testing models, and using thcse models in training or for performing
“what-1f” analyses.

While Pew and Mavor (1998, p. 10) initially note that their report will not address
usability, they later (p. 282) notc the need to have quickly reconfigurable modcls. They also
discuss (p. 292) ease of use. This revision is completely appropnate becausc usability is
important. Modcls that are too difficult to be used are not used. This issue is also being
taken up in the next generation of simulation models in the United States (Ceranowicz,

1998).

4.1 Usability of the Models

As we have noted before (Ritter, Jones, & Baxter, 1998b; Ritter & Larkin, 1994),
cognitive models suffer from usability problcms. Few lessons from the field of Human-
Computer Interaction (HCI) have been re-applied to increase the understanding of the
models themselves, even though many results and techniques in HHCI have been discovered
using cognitive modeling.

Modelers have to interact with the model several times and in scvcral ways over the
lifetime of the model. As a first step, the modcls must be easy to crcate. As part of the
creation and validation process, the models must be debugged on the syntactic level (will it
run?), on the knowledge levcl (docs it perform the task?), and on a behavioral level (docs it
perform the task like a human?). All of thesc levels are important if the costs of acquiring
behaviors are to be redueed. While we can point to some recent advances in usability
(Anderson & Lebiere, 1998; Jones, 1999b; Kalus & Hirst, 1999; Ritter et al., 1998b), further
work will be required.

It is also probably fair to say that cognitive models can often be difficult to explain and
understand. This problem has bcen noted as a result in a recent Air IForce model comparison
exercise, AMBR, covered in more detail in Section 6.2.7 (Gluck & Pew, 2001a). The
diffieulty in understanding a model’s behavior is partially due to their complexity, but it is
compounded at times by the difficulty of their interfaces not supporting the models in a
structured way, not displaying the modcl’s state, and not supporting cxploration of the
model’s state. In many cases this is not intentional, but anises out of the modeling languages
youth as programming languages, and that support for usability takes time away from
applications and modeling itsclf.
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4.2 Desired Accuracy of the Models

Another problem is knowing when to stop improving the model. In science for seienee’s
sake, there is no limit—thec model is continually improved. In the case of engineering-likc
applieations, such as behavioral models in synthetie environments, knowing when to stop is
a vahd question. In many cases we do not know how accurate thcse models havce to be in
order to be uscful and at what point additional accuracy is no longer worthwhile. For
example, does having an emotional, simulated opponent lead to better or worse training?

The purpose and goals of eaeh modeling projeet will help detcrmine when to stop
development, so they need to be earefully laid out when developing a model of behavior.
The stopping rule also applies to the synthetie environment as well as the model—there is
no point in developing a simulation that is too detailed. This question is becoming more
important as the models beeome more aeceurate and modifiable.

4.3 Aggregation and Disaggregation of Behaviors

A clear requirement for simulations in synthetic environments is the ability to aggregate
or summarize subunits and, in other situations, the ability to disaggregate and place the
subunits from a larger grouping. When the tanks in a platoon are each simulated in a
platform-level simulation, they must be aggregated to display them as a platoon on a more
abstract or larger-seale map. Similarly, higher-level units may have to be placed into a
simulation when moving a larger unit into a platform-level simulation. This aggregation (or
disaggregation) may need to occur multiple times when crossing levels of resolution to
provide the right level for a report.

This area has received a limited amount of study, yet it is a eommon need across
multiple types of simulations. None of the eognitive architeetures examined in Pew and
Mavor (1998, Table 3.1) or here offer any insight. We ean only note that several of the
architeeturcs (e.g., COGNET, Soar) arc dcsigned to support multiplc agents.

4.4 Summary

Environments for intcracting with existing modeling architectures are generally poorer
than those now provided for most programming languages. The requircments for modeling
are greater than general programming, including the necd for adjustablc accuraey, different
levels of analyses, and multiple measurements from running programs. These faectors
contribute to making modeling diffieult. We need new models and new techniques for
building and using models.

26 Human Systems IAC SOAR, 2003



CHAPTER §

Recent Developments for Modeling

In addition to thc architecturcs and approaches identificd by Pew and Mavor (1998),
there are a few other architectures that arc worth examining. In this chapter we note them,
including the lessons thcy provide. Our reviews also explicitly consider ease of usc
(i.e., model populating).

Wc focus our comments on cognitive architectures becausc they have been created for
modeling the strengths and limitations of human behavior. Any system built for other
reasons that was adapted in this way—for example, other Al systcms—would start to
approach these systems in capabilities and limitations. It is quite likely that the cognitive
architecture that best matches human behavior will vary by the type of behavior and level of
aggregation. For example, different architectures will be preferred for modeling a soldier
performing simple physical tasks than for a deliberate and reflective commander.

There will continuc to be a range of architectures crcated. We agrec completely with
Pew and Mavor (pp. 110-111) that further work is necessary beforc setthng on an
architecture. That is not to say that architectures will not continue to converge (e.g., Soar
and EPIC, Chong, 2001, and Soar and ACT-R, Joncs, 1998). We start, howcver, by
examining ways to summarize data and some advanced Al techniques to help createc modcls.
We then examine scveral architectures.

5.1 Data Gathering and Analysis Techniques

Scattcred throughout Pew and Mavor (e.g., pp. 323-325) are comments about thc nced
for data to devclop and tcst models. Data to develop modcls can come from a wide variety
of sources. Data can comce from speaking to experts and having them do tasks off-line, so-
called knowledgc acquisition (Chipman & Meyrowitz, 1993; Schraagen, Chipman, &
Shalin, 2000; Shadbolt & Burton, 1995). Data can also come from having experts talk aloud
while performing thc task (Encsson & Simon, 1993). Talking aloud is a more accuratc way
to acquire the knowlcdge because it is based on actual behavior rather thcn someonc’s
impression and mcmory of behavior. It is, howcver, a more costly approach because the
modeler must infer the behavior generators. Data for developing models can also come from
non-verbal mcasurements of experts while they perform the task. Non-verbal mcasurements
arc probably the lcast useful data (but still useful in some circumstances) for developing
models. These data arc useful, however, in testing modcls that makc timing predictions.
Data can also come from previously run studies, revicws, and compendia of such studics
(c.g., Boff & Lincoln, 1988 SeKular & Blake, 1994). A useful review of data types and
analysis methods in this area is provided by Hoffinan (1987).

A major rcquircinent will be a balance between the cxperimental control of the lab and
the nichness of the rcal world. An appropriate balance can sometimcs be achieved by
gathcring data in the samc micro-world simulations in which the models will be deployed,
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such as synthetic environments. These environments can be used to modcl all the salient
aspects of the real world, while still providing some level of experimental control.

Once the data are in hand, they will oftcn have to be aggregated or summarized. Expert
summaries from knowledge acquisition already represcnt summarized data, but the field of
verbal protocol analysis has dcveloped a wide range of techniques for summarizing such
data.

Reviews and suggestions in this arca are available (Ericsson & Simon, 1993; Sandcrson
& Fisher, 1994), but there exists a very widc range of techniques that vary based on how
advanced the theory is, the purposcs of the research, and the domain. Survival analysis is
one example of an advanced technique to examine protocol data for temporal patterns for
later inclusion and comparison against model behavior (Kuk, Amold, & Ritter, 1999).

With data in hand, the next stcp is either to develop a model or to test an existing model.
There is little formal methodology about how to create models. Some textbooks attempt to
teach this crcative task either directly (vanSomeren, Barnard, & Sandberg, 1994) or by
example (McClelland & Rumelhart, 1988; Newell & Simon, 1972). There are summaries of
the testing process (Ritter & Larkin, 1994) and of some possible tests (Ritter, 1993a).
Tenney and Spector (2001); and Ritter and Bibby (2001) provide particularly useful
example scts of comparisons. Repairing a model based on the results of the tests can be a
task requiring a lot of creativity.

5.2 Advanced Al Approaches

There are some existing Al tools that could be used to create, augment, or optimize
models of performance. We note here three tools with which we are particularly familiar.
These include approaches for crcating behaviors, such as genetic algorithms and traditional
Al-planning programs.

5.2.1 Genetic Algorithms

Genetic Algorithms (GAs) are search methods that can be used in domains in which no
heuristic knowledge is available and an objcctive function exhibits high levels of
incoherence (Goldberg, 1989). That is to say, a small change to the solution state may often
result in largc changes to the objective function or fitness measure. These algorithms are
expensive in machine resources and exhibit slow (but often steady) convergence to a
solution. They might be used as a search strategy of last resort for plan formation.

GAs are a family of algorithms loosely based on Darwinian evolution. They optimize
functions without assuming that the search space will be linear. They start with a
population of tcmplates for possible solutions (analogous to sets of chromosomes), and
evaluate them to determine how well they perform (fitness). After the fitness values are
computed, a new population is created. A variety of methods have been used to create the
next generation, but in each case the undcrlying principle has been to include copies of the
chromosomes proportional to their fitness, and at each generation to create new
combinations by combining two parcnts’ chromosomes. The cycles of evaluation and
creation are then repeated.
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Heuristics can be used with GAs to seed the initial population in a non-random way or
to guidc the crossover process in a way that changes the distribution of offspring. Using
heuristics results in a memetic algorithm (one that manipulates basic blocks of information
or memes). As has been common expericncc throughout the history of Al, this introduction
of domain knowlcdge can drastically transform the performance of the GA. Such algorithms
have becn found to cxceed the pecrformance of previous approachcs in a number of domains
(Burke, Elliman, & Weare, 1995). There may bc rcason for using GAs as a search strategy
in planning.

5.2.2 Tabu Search

Tabu search, as developed by Glover (Glover & Laguna, 1998), 1s a general purpose
approach remarkably effective for difficult problems where thc objective function has some
local coherence. It is surprising how often hill-climbing approaches such as the A*
algorithm are used in current plan-building algorithms, despite the domains being prone to
local maxima. Tabu search uses the novel concept of recency memory to prevcnt moves in a
solution space from being tried when some component of that state has recently been
changed in a previous move. This surprisingly simple idea forces the search away from a
local maximum. Long-terrn mcmory is used to hold the best solution state found so far and
this knowledge may be used to restart the search far away from any previous exploration of
the state space.

The Tabu scarch approach would almost certainly lead to improved solutions with
reasonable computational complexity. It would be worth using this approach to search for
strategies and plans at various levels in a synthetic cnvironment from the individual
combatant to the highest level source of command and control.

Soar i1s impressive in its ability to reusc parts of problems that have been solved in thc
past and to plan in a goal-directed way that can secm ingenious. Real human problem
solving can be less structured, however, and ean leap from one approach to another in a
manner that is difficult to model. Tabu search has this characteristic, howevcr, as part of its
diversification strategy. Including Tabu search in a cognitive architecture would bc
interesting. There may be some advantages to be gained by grafting on other similar systems
that modify thc beliefs of a cognitivc architecturc so as to maintain various types of logical
consistency in the set of facts held.

5.2.3 Multiple Criteria Heuristic Search?

Heuristic scarch, one of the classic techniqucs in Al has been applied to a wide range of
problem-solving tasks including puzzles, two-playcr games, and path-finding problems. A
kcy assumption of all problcm-solving approaches based on utility thcory, including
heuristic search, is that we can assign a singlc utility or cost to each state. This, in tumn,
requires that all critcria of interest can be reduced to a common ratio scalc.

1This section was drafted by Brian Logan and revised by the authors.
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The route-planning problem has conventionally becn formulated as one of finding a
minimum-cost (or low-cost) route between two locations in a digitized map, whcre the cost
of a route is an indication of its quality (e.g., Campbell, Hull, Root, & Jackson, 1995). In
this approach, planning is regarded as a search problcm in a space of partial plans, allowing
many of the classic search algorithms such as A* (Hart, Nilsson, & Raphael, 1968) or
variants such as A*epsilon (Pearl, 1982) to be applied. However, whilc such planners are
complcte and optimal (or optimal to some bound e), formulating the route-planning task in
terms of minimizing a single criterion is difficult.

For example, consider the problem of planning a route in a complex terrain of hills,
valleys, impassable areas, and so on. A number of factors will be important in evaluating the
quality of a plan: the length of the route, the maximum negotiable gradient, the degree of
visibility, and so on. In any particular problem, some of these critcria will affect the
feasibility of the route, while others are simply preferences. Route planning is an example of
a wide class of multi-criteria, problem-solving tasks, where different criteria must be traded
off to obtain an acceptable solution.

One way of incorporating multiple criteria into the problem-solving process is to define
a cost function for each criterion and use, for example, a weighted sum of these functions as
the function to be minimized. We can, for example, define a visibility cost for being exposed
and combine this cost with cost functions for the time and energy required to execute the
plan to form a composite function that can be uscd to evaluate alternative plans. However,
the relationship between the weights and the solutions produced is complex in reality, and it
is often unclear how the different cost functions should be combined linearly as a weighted
sum to give thc desired behavior across all magnitude ranges for the costs. This makes it
hard to specify what kinds of solutions a problem-solver should produce and hard to predict
what a problem solver will do in any given situation; small changes in the weight of one
criterion can result in large changcs in the resulting solutions. Changing the cost function on
a single criterion to improve the behavior related to that criterion often leads to changing all
the weights for all the other costs as well because the costs are not independcent. Moreover,
if different criteria are more or less important in different situations, we need to find sets of
weights for each situation.

The desirability of trade-offs betwcen criteria is context-dependent. In general, the
properties that determine the quality of a solution arc incommensurable. For cxample, the
criteria may only be ordered (on an ordinal scale), with those criteria that detcrmine the
feasibility of a solution being greatly preferred to those properties that are merely desirable.
It is difficult to see how to convert such problems into a multi-critcrion optimization
problem without making ad hoc assumptions. It is also far from elear that human behavior
solely optimizes on a single criterion.

Rather than attempt to design a weightcd-sum cost function, it is oftcn more natural to
formulate such problems in terms of a set of constraints that a solution should satisfy. We
allow constraints to be prioritized, that is, it is more important to satisfy somc constraints
than others, and soft, that is, constraints arc not absolute and can be satisfied to a greatcr or
Icsser degree. Such a framework i1s morc gencral in admitting both optimization problems
(e.g., minimization constraints) and satisficing problems (e.g., upper-bound constraints),
which cannot be modeled by simply minimizing weighted-sum cost functions. Vicente
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(1998) suggests ways in which such constraints can be analyzed as part of a work
domain analysis.

This approach to working with constraints providcs a way for more clearly specifying
problem-solving tasks and more precisely evaluating thc resulting solutions. There is a
straightforward correspondencc betwecn the real problem and the constraints passed to the
problem-solver. A solution can be characterized as satisfying some constraints (to a greater
or lesser degree) and only partially satisfying or not satisfying others. By annotating
solutions with the constraints they satisfy, the implications of adopting or executing the
current best solution are immediately apparent. The annotations also facilitate the
integration of the problem-solver into the architecture of an agent or a decision-support
system (see for example, Logan & Sloman, 1998). If a satisfactory solution cannot be found,
the degrec to which the various constraints are satisfied or violated by the best solution
found so far can be used to decide whethcr to change the order of the constraints, relax one
or more constraints, or even redefine the goal, before making anothcr attempt to solve
the problem.

The ordering of constraints blurs the convcntional distinction between absolute
constraints and preference constraints. All constraints are preferences that thc problem-
solver will try to satisfy, trading off slack on a more important constraint to satisfy another,
lcss important constraint.

The A* search algorithm is ill-suited to dealing with problems formulated in tcrms of
constraints. Researchers at Birmingham have therefore devcloped a generalization of A*
called A* with Bounded Costs (ABC; Alechina & Logan, 1998; Logan & Alechina, 1998),
which searches for a solution that best satisfies a set of prioritized soft constraints.

The utility of this approach and the feasibility of the ABC algorithm have becn
illustrated by an implemcnted route planner that is capable of planning routes in complex
terrain satisfying a variety of constraints. This work was originally motivated by difficultics
in applying classical search techniques to agent-routc planning problems. Howevcr, the
problems identified with utility-based approaches, and the proposed solutions, are equally
applicable to other search problcms.

5.3 Psychologically Inspired Architectures

We review hcre several psychologically inspired cognitive architectures that were not
covcred by Pew and Mavor (1998). These architectures are intcresting because (1) they arc
psychologically plausible, (2) some of them provide examples of how emotions and
bchavioral moderators can be included, and (3) several illustratc that better intcrfaccs for
creating cognitive models are possible.

5.3.1 Elementary Perceiver and Memoriser

The Elementary Pcrcciver And Memoriser (EPAM) is a well-known computer model of
a wide and growing range of memory tasks. The basic ideas behind EPAM includc
mcchanisms for encoding chunks of information into long-tcrm memory by constructing a
discrimination network. The EPAM model has becn used to simulatc a variety of
psychological regularitics, including the learning of verbal matcrial (Feigenbaum & Simon,
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1962, 1984) and cxpert digit-span memory (Richman, Staszewski, & Simon, 1995). EPAM
has been cxpanded to use visuo-spatial information (Simon & Gilmartin, 1973).

EPAM organizes memory into a collection of chunks, where each chunk is a meaningful
group of basic elements. For example, in chess, the basic elements are the picces and their
locations; the chunks are collections of pieces, such as a king-side pawn formation. These
chunks arc developcd through thc processes of discrimination and familiarization.
Essentially, each node of the network holds a chunk of information about an object in the
world. The nodes are interconnected by links into a network with each link representing the
result of applying a test to the objcct. When trying to recognize an object, the tests are
applicd beginning from the root node, and the links are followed until no further test can be
applied. When a node is reached, if the stored chunk matches that of the object then
familiarization occurs. The chunk’s rcsolution is then increased by adding more details of
the features in that object. If the current object and the chunk at the node reached differ in
some featurc, then discrimination occurs, which adds a new node and a ncw link based on
the mismatched feature. Therefore, with discrimination, new nodes are addcd to the
discrimination network; with familiarization, the resolution of chunks at those nodes
is increased.

The Chunk Hicrarachy and REtrieval STructures (CHREST; de Groot & Gobet, 1996;
Gobet & Simon, 1996b) is one of thc most current theories of memory dcveloped from the
ideas in EPAM. Gobet and Simon (2000) present a detailed description of the present
version of CHREST and report simulations on the role of presentation time in the recall of
game and random chess positions. As in the earlier chunking theory of Chase and Simon
(1973), CHREST assumes that chess experts develop a large EPAM-like net of chunks
during their practice and study of the game. In addition, CHREST assumes that some
chunks, which recur often during learning, develop into more complex rctrieval structures
(templates) with slots for variables that allow a rapid encoding of chunks or pieccs.

EPAM and its implemcntations are important to consider because they fit a subset of
regularities in memory very well. This at least serves as an example for other theories and
architectures to emulate. It may also be possible to include the essentials of EPAM in
another systcm, such as Soar or ACT-R, extending the scope of both approaches.

5.3.2 Neural Networks

Pew and Mavor (1998, chap. 3) review neural networks. Here, thereforc, we only
providc some further commentary, introduce some morc advanced concepts, and note a few
further applications.

Connectionist systcms have demonstrated the ability to learn arbitrary mappings.
Architecturcs such as the Multi-Layer Perceptron (MLP) arc capable of being used as a
black box that can leamn to recognize a pattern of inputs as a particular situation. This
requires supervised training and may involve heavy computational resources to arrive at a
succcssful solution using the back-propagation algorithm. Training ean be eontinucd during
performance as a background task, and thus, an entity could have an ability to learn during
action based on this approach. Recognition performance is relatively rapid and a multi-layer
perceptron might be used to model a reaction mechanism in which a combatant responds to
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coming under fire, or spotting the presence of the enemy, for examplc. It might also bec used
to activate particular aspects of military doctrine depending on the current circumstanccs.

Recurrent nets such as the Elman (1991) net have the ability to generate sequences of
tokens as output. These scem to offer some promise of detecting an input situation and
producing a scrics of behavioral actions as a responsc. This behavior of recurrcnt nets may
be useful for modcling the rcactive behavior of an entity over a short tume period, while a
symbolic cognitive model is used for the higher-level cognitive proccsses that occur over a
longer timc span.

5.3.3 Sparse Distributed Memories

Subtle issues such as the tip-of-the-tongue phcnomena (Konat & Lieblich, 1974) and the
fact that we know if we know something (feeling of knowing) before becoming aware of the
answer are not oftcn modcled (although, see Schunn, Reder, Nhouyvanisvong, Richards, &
Stroffolino, 1997, for a counter example). These effects may be captured using memory
modcls such as Kanerva’s (1988) Sparse Distributed Mcmory (SDM), which has been put
forward as a plausible model of brain architecture, particularly the cerebcllum, as well as by
Albus’s (1971) Cerebellar Model Arithmetic Computer (CMAC).

The way in which a combatant’s cxperience of thc world is stored and modeled is
important. An SDM seems to offer powerful human-likc ways of recalling nearest matches
to present cxperience in a best-first manner. They have the interesting property of storing
memories such that recall works by finding the best match to impcrfcct data. They are also a
natural way of storing sequences. They exploit interesting mathematical propcrties of binary
metric spaces with a large number of dimensions. It is intriguing that SDMs have the
human-like properties that they “know if they know* something beforc the retrieval process
is complete. They also exhibit the tip-of-the-tongue phcnomcnon and replicate the human
ability to recall a scquence or tune given the first few itcms or notes. They can also leamn
actuator sequences that might be used in muscle control or rcflex patterns of behavior. This
can even be seen as a kind of thinking by analogy that has a uniquely human-like ability to
find a close match rapidly without exhaustive or even significant timc spent in search.

5.3.4 PSI and Architectures That Include Emotions

PSI is a rclatively ncw cognitive architecture designed to integrate cognitive processcs,
emotions, and motivation (Bartl & Domer, 1998). The architecture includes six motivces
(needs for cncrgy, watcr, pain avoidance, affiliation, certainty, and competence). Cognition
1s modulated by these motive/emotional states and their processcs. In general, PSI organizes
its activitics similar to Rasmussen’s (1983) hierarchy: first, it trics highly automatic skills if
possible, then it skips to knowledge-based behavior, and as its uftima ratio approach it uscs
trial-and-error procedurcs. It is one of the only cognitive architccturcs that we know about
that takes modcling emotion and motivation as one of its core tasks. Its sourcc codc, in
Delphi Pascal, 1s available (www.uni-bamberg.de/ppp/instthcopsy/psi-software. html).

A model in thc PSI architccture has been tcsted against a set of data taken from a
dynamic control task. The modcl performed the same task and its number of control actions
was within the range of human behavior. Its predictions of summary scores were outside the
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range of human behavior—the model was less competent (Detje, 2000)—but singlc
subjects can be modeled by varying starting parameters (Démcr, 2000). In such a complex
task as thc “Island” scenario some people will use mcta-cognition to improve their
performance (particularly if thcy are encouraged to think aloud as they were in Detje’s
study). The same data could reveal that these subjects profit from meta-cognition and that
their behavior then differs from what is implemented currently in PSI (sec Bartl, 2000, for
a more detailed explanation).

This model needs to be improved before it matches human emotional data as well as
other cognitive models match non-cmotional data. It is, however, one of the few models of
emotion compared with data.

The PSI architecture is currently incomplete, which raises interesting questions about
how to judge a nascent architecture. PSI does not have a large enough user community and
has not been developed long enough to have a body of regularities to be compared with let
alonc adjusted to fit. How can PSI be compared with the older architectures with existing
tutorials, user manuals, libraries of models, and example applications?

Several other models of emotions and architectures that use emotions have been created.
Reviews of cmotional models (Hudlicka & Fellous, 1996; Picard, 1997) typically present
models and architectures that have not been compared and validated against human data.
There appears to be one othcr exception, an unpublished PhD thesis by Araujo at the
University of Sussex (cited in Picard, 1997). Some of us are attempting to add several
simple emotions to ACT-R (Belavkin, 2001; Belavkin et al., 1999) and validate the model
by comparing the revised model with an existing model and comparable data (G. Jones,
Rittcr, & Wood, 2000).

5.3.5 COGENT

COGENT is a design environment for creating cognitive models and architcctures
(Cooper & Fox, 1998). It allows the user to draw box-and-arrow diagrams to structure and
illustrate the high-level organization of the modcl and to fill in the details of each box using
one or a series of dialoguc sheets. The boxes include inputs, outputs, memory buffcrs,
proccssing steps, and cven production systems as components.

COGENT’s strengths are that it is easy to teach, the displays provide useful summaries
of the model that help with explanation and development, and the environment is fairly
complete. It appears possible to reuse components on thc level of boxes. COGENT’s
weaknesses are that it is fairly unconstrained; for large systems it may be unwieldy; and it
might not interfacc wcll to extcrnal simulations,

COGENT also shows that cognitive modeling environments can at least appear more
friendly. The results of its graphic interface routinely appear in talks as model summaries.
The intcrface is also quite encouraging to users, allowing them to feel that they can start
working immediately.
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5.3.6 Hybrid Architectures

Hybrid architectures arc architecturcs that typically include symbolic and non-symbolic
elements. A more general definition would be architectures that include major components
from multiple architectures.

Hybrid architectures are mentioned briefly by Pew and Mavor (1998, pp. 108-110).
Work has continued in this area with some interesting results. 1LICAI (Kitajima & Polson,
1996; Kitajima, Soto, & Polson, 1998), for example, modcls how people explorc and use
interfaces based on a theory of how Kintsch’s (1998) schemas receive activation. The U.S.
Office of Naval Research (ONR) has sponsored a research program on hybrid arehiteetures
(Giglcy & Chipman, 1999). This has given rise to some new, interesting hybrid architectures
(e.g., Sun, Merrill, & Peterson, 1998; Wang, Johnson, & Zhang, 1998).

Perhaps the most promising hybrids are melding perception components across
cognitive architectures. The EPIC (Kieras & Meyer, 1997) architecture’s perception and
action componcnt has been merged with ACT-R’s perceptual-motor component, ACT-
R/PM (Byrne, 2001; Byme & Anderson, 1998) and with Soar (Chong, 2001). This has led
to direct reuse and unification. Similar results have been found with the Nottingham
functional interaction architecture being used by Soar and ACT-R models (Bass et al., 1995;
Baxter & Ritter, 1996; Ritter et al., 2000; G. Jones et al., 2000).

5.4 Knowledge-Based Systems and Agent Architectures

Agent architectures will be important within synthetic environments for modeling
autonomous vehicles and for exploring the doctrine of autonomous vehicles. Most
principled agent architectures have historical roots in distributed artificial intelligence. For
several decades, distributed Al has been tackling essentially the same problem as
Knowledge-Based Systems (KBS) research, namcly, how to produce efficient problem-
solving behavior in software. The main conccpt that brings agency and KBS together is the
idea of operation at the knowledge level as described by Newell (1982).

The behavioral law used by an observer to understand the agent at the knowledge level
is the principle of maximum rationality (Newell, 1982), which states, “If an agent has
knowledge that one of its actions will lead to one of its goals, then the agent will select that
action.” The modeling of intelligent artificial systems at the knowledge lcvel, that is, with
no referenee to details of implementation, is a key prineiple in KBS eonstruetion. 1t is also at
the heart of many assumptions in the tradition of explaining human behavior.

Nwana (1996) claims that an important difference between agent-based applieations and
other distributed computing applications is that agent-based applications opcrate typically at
the knowledge level, whereas distributed computing applications operate at the symbol
level. At the symbol level, the entity is seen simply as a mechanism acting over symbols,
and its bchavior is described in thesc terms.

The theorctical links between the motivations behind KBS and agent rescarch can be
seen in the main approaches taken to the definition of software agency. Ascriptional agency
attempts to create convincing human-like behaviors in software in the belief that this will
produce programs that are easy to interact with. This work can be seen as paralleling the
expert behavioral modeling approach that is eurrently widely espoused in the KBS
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community. The Belief-Dcsire-Intention (BDI) agents focus on the concept of
intentionality-—the mental attitudes of the agent. BDI models have been successfully
implcmented in systems such as the DESIRE framework (Brazier, Dunin-Keplicz, Treur, &
Verbrugge, 1999) and the JAVA Agent Compiler and Kernel (JACK) component system
(Busctta, Howdcn, Ronnquist, & Hodgson, 1999a; Busetta, Rénnquist, Hodgson, &
Lucas, 1999b).

JACK is an cxtension to JAVA. It includes a JAVA library and a compiler that takes a
JAVA program with embedded JACK statements. A JAVA compiler expands/incorporates
the JACK statements to create a runnable JAVA program. These statements implement a
BDI architecture, while allowing JAVA statements to extend and implement them. The
statements include commands like @achieve(condition, event), which subgoals on event if
condition is not found to be true.

The resulting program instantiates a BDI agent. Its BDI architecture is made up of
beliefs represented with a database; desires represented as events that can trigger plans; and
intentions represented through these plans. For example, a fact may come in from
perception and match a desire, that of putting new facts into the database. This may result in
further desires being matched and intentions (plans) leading to behaviors. Further
information is available at the JACK developer’s website (www.agent-software.com.au).

Reviews of the agent literature (Etzioni & Weld, 1995; Franklin & Gracsser, 1997;
Wooldridge & Jennings, 1995)” reveal that, when attempting to define agency as dependent
on the possession of a set of cardinal attributes, many of the attributes suggested could also
be seen as characteristic of behavior that is best explained at the knowledge lcvel. These
include abstraction and delegation, flexibility and opportunism, task orientation, adaptivity,
reactivity, autonomy, goal-directedness, flexibility, collaborative and self-starting behavior,
temporal continuity, knowledge-level communication ability, social ability, and cooperation.

Both agent systems and KBSs are moving in the direction of modular componcnts of
expertise as a response to the problems of knowledge use and reuse to promote intelligent
behavior in software. Domain ontologies form a significant subset of these KBS
components. Increasingly, multi-agent systems are being produced that use such domain
ontologies to facilitate agent communication at the knowledge level, for example, the agent
network created as part of the Infosleuth architecture (Jacobs & Shea, 1996). Some agent
systems also draw explicitly on models of problem-solving expert behavior developed in
KBS research. The internet-based Multi-agent Problem Solving (IMPS) architecture (Crow
& Shadbolt, 1998) uses software agency as a medium for applying model-driven knowledge
engineering techniques to the intcrnet. It involves software agents that can conduct
structurcd online knowledge acquisition using distributed knowledge sources. Agent-
generated domain ontologies are used to guide a flexible system of autonomous agents
driven by problem-solving models.

2 For online information about examples and related U.S. programs, see www.darpa. milfito/ResearchAreas.html and

www.nosc.mil/robots/air’/amgsss/mssmp.html.
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5.5 Architectural Ideas Behind the Sim_Agent Toolkit3

Since the early 1970s, Sloman and his colleagues have been attcmpting to devclop
requirements and designs for an architecturc capable of cxplaining a widc variety of facts
about human beings and other intelligent agents. Sloman’s idcas about cognitive
architecturcs and the theoretically bascd agent architecturc toolkit (Sim_Agent) providc
uscful lessons about architectural toolkits and about process models of emotions. Further
information is available at the CogAff websitc (www.cs.bham.ac.uk/~axs/cogaff.html).

5.5.1 Cognition and Affect

A human-like information proccssing architecture includes many componcents
performing different functions all of which operatc in parallel, asynchronously. This is not
the kind of low-level parallelism found in ncural nets (although such neural mcchanisms arc
part of the infrastructure). Rathcr there scem to be many functionally distinct modulcs
performing different sorts of tasks concurrently, a significant proportion of them are
concerned with the monitoring and control of bodily mechanisms, for example, posturc,
saccades, grasping, tempcraturc control, daily rhythms, and so on.

The very oldest mechanisms in the human architecture arc probably all reactive in the
scnsc described in various recent papers (c.g., Sloman, 2000). The key fcature of rcactivity
1s the lack of “what-if* reasoning capabilities, with all that cntails, including thc lack of
temporary workspaces for represcntations of hypothesized futures (or past episodes); the
lack of mechanisms for storcd factual knowledge (generalizations and facts about
individuals) to support the generation of possible futurcs, possible actions, and likely
conscquences of possible actions; and the lack of mechanisms for manipulating
explicit represcntations.

Both reactive and deliberative mechanisms rcquirc perceptual input and can generate
motor signals. Howevecr, to function effcctively, both perceptual and action subsystems may
have evolved ncw laycrs of abstraction to support thc newer deliberative proccsses, for
example, by catcgorizing both observed objccts and events at a higher level of abstraction,
and allowing higher-level action instructions to gencrate behavior in a hierarchically
organized manner. More generally, different subsystems use information for different
purposes so that a number of different processcs of analysis and interpretation of sensory
input occur in parallcl, extracting differcnt affordanccs from raw data from the optic array.
Recent work by brain scientists on ventral and dorsal visual pathways are but one
manifcstation of this phenomenon.

The intcractions betwcen rcactive and dcliberative layers arc complex and subtle,
espccially as neither i1s in charge of the othcr, though at times either can dominate.
Morcovecr, the division is not absolute: information in the dcliberative system can sometimes
be transferred to thc rcactive systcm (e.g., via drill and practice learning), and information in
thc reactive system can somctimes be decompiled and made available to dcliberative
mechanisms (though this is oftcn highly crror-pronc).

3 This section was drafied by Aaron Sloman and revised by the authors

Human Systems IAC SOAR, 2003 257



Modeling Human Performance

For reasons explained in various papers available in the CogAff FTP site, it is possible
to eonjecture that at a much latcr evolutionary stage a third class of mechanism developed,
again using and redeploying mechanisms that had existed previously. The new type of
mechanism, which has been provisionally labeled “meta-management,” provides the ability
to do for internal processes what the previous mechanisms did for external processes:
namely it supports monitoring, evaluation, and control of othcr internal proccsses, including,
for instance, thinking about how to plan, or planning better ways of thinking. For cxample, a
deliberative system partly driven by an independent reactive system and sensory
mechanisms can unexpectedly acquire inconsistent goals. A system with meta-management
can notice and categorizc such a situation, evaluate it, and perhaps through deliberation or
observation over an extended period, develop a strategy for dealing with such conflicts.

Similarly, meta-management can be used to detect features of thinking strategies and,
perhaps in some cases, notice flaws or opportunities for improvement. Such a mechanism
(especially in conjunction with an external language) also provides a route for absorption of
new internal processes from a culture, thereby allowing transmission between generations of
newly acquired information without having to wait for new genetic encodings of that
information to evolve. Through internal monitoring of sensory buffers, the extra layer adds a
kind of self-awareness that has been the focus of discussions of consciousness, subjective
experience, qualia, etc. As with external processes, the monitoring, evaluation, and re-
direction of internal processes is neither perfect nor total and, as a result, mistakes can be
made about what is going on, inappropriate evaluations of intcrnal statcs can occur, and
attempts to control processing may fail, for example, when there are lapses of attention
despite firm intentions.

Another feature of meta-management is its ability to be driven by different collections
of beliefs, attitudes, strategies, and preferences, in different contexts, explaining how a
personality may look different at home, driving a car, in the office, etc. Besidcs the three
main concurrent processing layers (reactive, deliberative, and meta-management) identified
abovc that others have found evidcnce for, a number of additional specialized mechanisms
are needed, including: mechanisms for managing short- and long-term goals, a variety of
long- and short-term memory stores, and onc or more global alarm systems capable of
detecting a need for rapid global re-organization of activity (freezing, flecing, attacking,
becoming highly attentive, etc.), and also producing that re-organization.

For instance, whereas many people have distinguished primary and sccondary emotions
(e.g., Damasio, 1994), Sloman and his colleagues have proposed a third type, tertiary
emotions, sometimes refcrred to as perturbances (Sloman, 1998a; Sloman & Logan, 1999).
Primary emotions rely only on the reactive levels in the architecture. Secondary emotions
require deliberative mechanisms. Tertiary emotions are grounded in the activities of meta-
management, including unsuccessful meta-management. There are other affective states
concerned with global control, such as moods, which also have different relationships to the
different layers of processing. Many specific states that are often discussed but very
unclearly defincd, such as arousal, can be given much clearer definitions within the
framework of an architecture that supports them.

It looks as if various subsets of the capabilities described here arising out of the three
layers and thcir interactions can be modeled in the architectures dcveloped so far, for
example, Soar, ACT-R/PM, Moffatt and Frijda’s Will architecture (2000), and the various
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logic-based models that dominate the ATAL (Architecturcs, Theories and Languages) series
of workshops (e.g., Wooldridge, Mucller, & Tambe, 1996, also see mas.cs.umass.edu/atal/),
and books like Wooldndge and Rao (1999).

However, only small subsets of these capabilitics can be modcled at present. Any
realistic model of human processing needs to be able to cope with contexts including rich
bombardment with multi-modal sensory and linguistic information; where complex goals
and standards of evaluation are constantly interacting; where things often happen too fast for
fully rational dcliberation to be used; wherc everything that occurs docs not always fall into
a previously learned catcgory for which a standard appropriate response is already known;
where decisions have to be taken on the basis of incomplete or uncertain information; and
where the activity of solving one problem or carrying out one intricate task can be subverted
by the armival of new factual information, new orders, or ncw goals gencrated internally as a
side-cffect of other processes.

Where the individual is also driving a fast-moving vchicle or is under fire then it is very
likely that a huge amount of the processing going on will involve the older reactive
mechanisms, including many concerned with bodily control and visual attention. It may bc
some time beforc we fully understand the implications of such total physical immersion in
stressful situations, including the effects on deliberative and meta-management processes.
(For examplc, fixing attention on a hard planning problem can be difficuit if bombs arc
exploding all around you. Can our models explain why?)

5.5.2 Sim_Agent and CogAff

Sloman and his colleagues’ general architectural toolkit, the Sim_Agent Toolkit, allows
them to explore a variety of new idcas about complex architectures. It is not an architecture,
but a steadily developing toolkit for exploring architectures.

The CogAff architccture provides a schema, based on a 3 by 3 gnd that provides a
framework for describing specific architectures according to the grid components present,
their control relationships, and how information flows between them. H-CogAff is a spccific
human-like version that is a particularly rich special casc. Other spccial cases include
various kinds of purely reactive (i.e., non-deliberative) architectures (perhaps inseets or
reptiles), Brooks’ subsumption architectures, purely delibcrative architectures (lots of old Al
systems, early versions of Soar and ACT), and so on.

Sloman and his eolleagues also wanted a toolkit that supported exploration of a number
of interacting agents (and physical objcets, ete.) where each agent has a varety of very
different mechanisms running concurrently and asynchronously, yect influencing one
another. They also wanted to be able to very easily change the architccture within an agent,
change the degree and kind of interaction between componcents of an agent, and speed up or
slow down the processing of one or more sub-mechanisms relative to others (Sloman,
1998b). In particular, they wanted to be able to casily combinc different types of symbolic
mechanisms and also sub-symbolic mechanisms within one agent. The toolkit was also
required to support rapid prototyping and interactive development with close connections
between internal processes and graphic displays.

Because other toolkits did not appear to have the required flexibility and tended to be
committed to a particular type of architccture, Sloman and his collcagues built their own
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toolkit, which has been uscd for some time at the University of Birmingham and DERA,
Malvern. Their toolkit is described briefly in Sloman and Logan (1999) and in more
detail in the onlinc documentation at the Birmingham Poplog FIP site
(ftp.cs.bham.ac.uk/pub/dist/poplog/). The code and documecntation arc frcely available online.
The toolkit runs in Pop-11 in the Poplog system (inherently a multi-language Al system, so that
code in Prolog, Lisp, or ML can also be included in the same process). Poplog has become
freely available (www.cs.bham.ac.uk/research/poplog/freepoplog.hitml).

At present, Sloman does not propose a spccific overarching architecturc as a rival to
systems like Soar or ACT-R. He feels that not enough is yet known about how human minds
work and, consequently, any theory proposing the architecture is premature. Instead, he and
his group have been exploring and continually refining a collcction of ideas about possibly
relevant architectures and mechanisms. Although the ideas havc becn steadily developing,
Sloman and his colleagues do not believe that they are near the end of this process. So,
although one could use a labcl like CogAff to refer to the general sort of architecture they are
currently talking about, it is not a label for a fixed design. Rather CogAff should be taken to
refer to a high-level overview of a class of architectures in which many details still remain
unclear. The CogAff ideas are likely to change in dramatic ways as more is learned about
how brains work, about ways in which they can go wrong (e.g., as a result of disease, aging,
brain damage, addictions, stress, abuse in childhood, etc.), and how brains differ from one
species to another, or one person to another, or even within one person over a lifetime.

The toolkit is still being enhanced. In the short term, they expect to make it easier to
explore architectures including meta-management. Later work will include better support
for sub-symbolic spreading activation mechanisms and the development of more reusable
libraries, preferably in a language-independent form.

5.5.3 Summary

The Sim_Agent toolkit and the goals its developers have for it have some commonalties
with other approaches. The need for a library of components is acknowledged. They
emphasize that reactive behaviors are necessary and desirable, and that the emotional
aspects arise out of the rcactive mechanisms. It provides a broad range of support for testing
and creating architectures. The toolkit provides support for rcflection as a type of meta-
lcarning. Other architectures will need to support reflection as wcll, particularly where the
world is too fast-paced for learning to occur during the task (John, Vcra, & Newell, 1994;
Nielsen & Kirsner, 1994).

The features that the toolkit supports help define a description of architectural types.
The capabilities that can be provided, from perception to action and from knowledge to
emotion, provide a way of describing architectures.

The major drawback is that none of the models or libraries created in Sim_Agent have
been compared with human data directly. In defense of this lack of comparison, Sloman
claims that the more complex and realistic an architecture becomes, the less sense it makes
to test it directly. Instead, he claims that the architecture has to be tested by the depth and
variety of thc phenomena it can explain, like advanced theories in physics, which also
cannot be tested directly.
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5.6 Engineering-Based Architectures and Models

There is a history of studying process control in and near industrial engineering that
includes studying human operators. This approach is not (yet) part of mainstrcam
psychology, and Pew and Mavor (1998) do not make many references to work in this field.

If tank operators and ship captains can be viewed as running a process, and we believe
they can, there is a wide range of behavioral regulanties referenced and modeled in
engineering psychology that can be generalized and applied to other domains. Major
contributions in this area include Reason’s (1990) book on errors, Rasmussen’s skill
hierarchy (1983), the Cognitive Reliability and Error Analysis Method (CREAM)
methodology for analyzing human performance (Hollnagel, 1998), and numerous studies
characterizing the strengths and weaknesses of human operator behavior (de Keyser &
Woods, 1990; Sanderson, McNeese, & Zaff, 1994).

Engineers have also created intelligent architectures. Thesc architectures have almost
exclusively been used to create models of users of complex machinery, ranging from
nuclear power plants to airplanes. The models are often, but not always, ticd to simulations
of those domains. Their approach is gencrally more practical. They are more interested in
approximate timing and the overt behavior than in detailed mechanisms. These developers
appear to be less interested in the internal mechanisms giving rise to behavior as long as the
model is usable and approximately correct.

These models of operators includc modcls of nuclear power plant operators, the
Cognitive Simulation Model (COSIMO; Cacciabue et al., 1992), and the Cognitive
Environment Simulation (CES; Woods, Roth, & Pople, 1987). AIDE (Amalberti & Deblon,
1992) is a model of fighter pilot behavior; the Step Ladder Modcl or Skill-based, Rulc-
based, Knowledge-bascd model is a generally applicable framework, originally formulated
in electronics troubleshooting (c.g., Rasmussen, 1983).

We will also look at a fcw operator models in more detail.

5.6.1 APEX*

APEX (Freed & Remington, 2000; Freed et al., 1998; John et al., 2002) is a set of tools
for simulating human performance when interacting with interfaces to perform tasks similar
to MIDAS (Laughery & Corker, 1997). The main driver for APEX is the need to model
behavior in environments, such as air traffic control and commercial jet flight decks, and to
help engineers design usable systems in these domains

Powerful action-selection mechanisms of the sort developed by artificial intelligence
researchers are used to cope adaptively with time-pressure and uncertainty, and to
coordinate the execution of multiple tasks (i.e., strategic multi-tasking). Usability is taken
very seriously (Freed & Remington, 2000). A high-level modeling language is included.
Applications of APEX have included time-analysis of skilled behavior, partially-automated

4 Comments from Michael Freed were helpful in preparing this section.
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human-factors design analysis, and creation of artificial human participants in
large-scale simulations.

This general approach has proven successful in allowing APEX to automate the CPM-
GOMS HCI analysis method (John & Kieras, 1996) and for reconstrueting incidents
involving human error in a way that promise eventual error-prediction capabilitics. As much
as it implements CPM-GOMS, it inhents CPM-GOMS’ empincal support. Consistcnt with
the needs of domains in which APEX has bcen most frequently used, the action-selection
architecture cmphasizes capabilities having to do with multi-task management, especially
regarding concurrency control and strategic task management.

APEX was created by Freed as part of his doctoral dissertation and continues to be
developed by researchers at NASA Ames Research Center and elsewhere. They are
explicitly concerned about building a community of users to share ideas and models. Further
information, including APEX itself, is available through search engines.

APEX is probably best described as an engineering model because it has been designed
to serve engineering goals. APEX is interesting because it models the whole operator, from
perception to action, and the model often interacts with fairly complete and complex
simulations, and can make very detailed predictions easily. It does not yet include learning,
and thc complex results past CPM-GOMS could be tested more, but the full toolset suggests
that interface design tools based on eognitive models are now possible.

5.6.2 Simplified Model of Cognition and Contextual Control Model

The Simplified Model of Cognition (SMoC) (Hollnagel & Cacciabue, 1991) is an
extension of Neisser’s (1976) pereeptual cyele and describes cognition in terms of four
essential elements: (1) observation/identification, (2) interpretation, (3) planning/selection,
and (4) action/execution. Although these are normally linked in a senial path, other links are
possible between the various elements. The small number of cognitive functions in SMoC
reflects the general consensus of opinion that has developed since the 1950s on the
charaeteristics of human cognition. The fundamental features of SMoC are the distinction
between observation and inference (overt vs. covert behavior), and the cyclical nature of
cognition (cf. Neisser, 1976).

SMoC was formulated as part of the System Response Generator (SRG) project
(Hollnagel & Cacciabue, 1991). SRG was a software tool dcveloped to study the effect of
human cognition (specifically actions and deeision making) on the evolution of incidents in
complex systems.

The Contextual Control Model (CoCoM; Hollnagel, 1993) is an extension of the SMoC,
and addresses the issues of modeling both eompetence and eontrol. In most models the issue
of compctence is supported by a set of procedures or routines that can be employed to
perform a particular task when a particular set of pre-defined conditions obtains. CoCoM
further proposes that there are four overlapping modes of control—influenced by knowledge
and skill lcvcls—that also influence behavior:
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e Scrambled control: where the selection of the ncxt action 1s unpredictable. This is
the lowest level of control.

e Opportunistic control: where the selection of the next aetion is bascd on the eurrent
context without reference to the current goal of the task being performed.

e Tactical control: where performance is based on some form of planning.

e Strategic control: where performance takes full account of higher-level goals. This
is the highest level of control.

The transition betwceen control modes depends on a number of factors, partieularly the
amount of subjectively available time and the outcome of the prcvious action. These two
factors arc interdependent, however, and also depcnd on aspects such as the task complexity
and the current control mode.

CoCoM has been used in the development of the CREAM (Hollnagcl, 1998) within the
field of human rchability analysis. The CREAM is a method for analyzing human
performance when working with complex systems. It can be used in both the rctrospective
analysis of accidents and events, and in predicting performance for human rcliability
assessment. Extending the CREAM 1s presented below as a uscful projcct.

5.6.3 Summary

These engineering-based architectures suggest that enginecring models can provide
useful behavior even when the internal mechanisms are not fully tcsted or perhaps even
plausible. These architectures suggest that some of the difficulty in crcating the architectures
is due to the implicit and explicit knowledge that psychologists bring with them regarding
plausibility. We believe psychologists’ domain knowledge leads to more accuratc models
but slower dcvclopment.

5.7 Summary of Recent Developments for Modeling Behavior

This chapter has revicwed several architectures. Thesc architecturcs and thcir
applications show that it is becoming incrcasingly possible to crcate plausible and useful
architectures based on a variety of approaches.

An agrced, formal schemc for classifying architectures would bc uscful. This ideal
system classification would note the sorts of tasks that each architecture performs best,
supporting uscrs to choose an arehitecture for a partieular task. The best that we have found
is Table 3.1 in Pcw and Mavor (1998, pp. 98-105). Our Table 5.1 provides a summary of the
architectures presentcd here in that same format as a supplement to their tablc. We have
included all relevant information of which we are awarc for each architecture. In most cases
the developcrs of the architectures have helpcd complete their centry in this table. Another
approach for classifying architectures 1s available from Logan (1998).

Developments in Al continue to be useful. The gcneral Al methods discussed are not
included in this table becausc they arc not broad enough to bc considered a cognitive
architecture, but they are likely to be useful additions to architectures, eithcr directly or
indirectly. For examplc, genctic algorithms have been included in a proposed architecture
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(Holland, Holyoak, Nisbett, & Thagard, 1986), and planning algorithms havc bcen included
as adjuncts to Soar (Gratch, 1998). These developments will help extend architectures by
providing algorithms for inclusion within architectures, particularly hybnd architectures.

There are scveral interesting trends to notc. Onc is that the diversity of architectures is
not decrcasing. New, fundamental ideas on which to base architccturcs has widened from
simply problem solving. For example, EPAM is based on pattern recognition, and PSI and
architectures created in the Sim_Agent Toolkit are based on ideas about emotions.

Another interesting trend is that some aspects of the architectures are starting to merge
and be reused. The interaction aspccts of EPIC have becn rcused by Soar and by ACT-R.
The Nottingham Interaction Architecture is similar in some ways and getting similar reuse
(e.g., Jones et al., 2000). These strands are becoming quite similar to each other (Byrne,
Chong, Freed, Ritter, & Gray, 1999) and arc quite likely to merge in the future.

The importance of model usability is becoming more recognized. COGENT provides an
example of how easy a modeling tool should be to pick up and use. Similar developments
with Soar and ACT-R are starting to emphasize reusable codc, better documentation, and
better tutorial materials. Other architectures will have to follow suit to attract users and to
train and support their existing users. Newell (1990) wrote about the entry level (the bar)
being raised as architectures develop through competition. It is interesting that usability is
perhaps the first clcar comparison level.
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Architecture

Original purpose

Submodels

Sensing and perception

1 EPAM

2 SDM

3 PS8l

4 COGENT

5 JACK as example of BDI
architectures

6 Sim_Agent Toolkit

7 Engineenng-based
models (e.g., APEX)

Model high-level perception,
learning, and memory

Simulation of cerebellum as a
content-addressable memory

Explores interaction of cognition,
motivation, and emotion to build an
integrated model of human action
regulation

Design environment for modeling
cognitive processes

Constitute an industnal-strength
framework for agent applications

Explores architectures using rapid
prototyping

Provide models of humans in control
loops

Visual, auditory perceptual discrimination in
real-time (assuming feature-based description
of objects)

Can be used to recall the nearest stored
memory to any encoded perceptual input

Optical perception by “Hypercept” process that
scans (simulated) environment for basic
features. Raises hypotheses about sensory
schemas to which features may belong and
tests these hypotheses by subsequent
scanning of environment (comparable to
saccadic eye-movements). If pattern not
recognizable, new schema generated

Input buffers that can be modified to represent

vision and heanng

JAVA methods + inter-agent messaging

Defined by methods for each agent class.

Varies, but exists for most models
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Submodels
Working/ Long-Term Memory Motor Outputs
Short-Term memory
1 4-7 slot STM; in some Discrimination net. In recent versions, Eye movements, simple drawing

versions (e.g., EPAM-IV),
more detailed
implementation of auditory
(Baddeley-like) STM & visual

STM
2 Not modeled
3 The head of a protocol

memory that permanently
makes a log of actions and

perceptions
4 Various types supported
5 Object-oriented structures

(JAVA), plus relational
modeling support (JACK)

nodes of discnmination net used to
create semantic net and productions

Sparse Distributed Memory models
related to PDP and neural-net
memory models

The remnants of logs decay with time.
Stnngs of logs associated with need
satisfaction or with pain will be
reinforced and have a greater chance
to survive and form a part of long-term
memory than neutral sequences of
events

Various types supported

All JAVA support including database
interfaces etc. Support for data
modeling in JAVA and C++ using
JACOB (JACK Object Builder)

behavior

Motor sequences can be leamned.
Nearest match memones can be
sequences that could be
behaviors

Basic motor patterns (actions)
combined to form complex
sensory-motor-programs by
leaming (i.e., by reinforcement of
the successful sensory-motor-
patterns in logs)

Simple buffer representation of
commands

JAVA methods

6 List structures List structures, rules, and arbitrary Defined by methods for each
Pop-11 data structures. Can also use  agent class
neural nets, if required
7 Usually simple, but extant Usually simple, but extant Usually extant, but usually not
complex
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Table 5.1: Comparison of Architectures (continued)

Knowledge Representation

Architecture Declarative Procedural

1 EPAM Chunks, schemas (templates); using nodes  Productions using nodes in
in discrimination net discrimination net

2 SDM A sparse set of memory addresses where Memories naturally form sequences
data are addresses that could be considered procedures

3 Psi Sensory and sensory-motor patterns Sensory-motor-patterns forming
consisting of pointer structures forming automatisms

schemas. A schema includes information
about more basal elements and relations of
elements in space and time, including
language patterns pointing to sensory and
sensory-motor patterns (implementation in

progress)
4 COGENT Numbers, strings, lists, tuples, connectionist  Production rules, connectionist
networks networks, Prolog
5 JACK as an example of Object-oriented structures (JAVA), plus JACK plans and JAVA methods
BDI architectures relational modeling support
6 Sim_Agent Toolkit List structures and arbitrary Pop-11 data Rule sets and arbitrary Pop-11
structures (e.g., could be constrained to procedures that can also invoke Prolog

express logical assertions but need not be).  or external functions
Could use neural nets or other mechanisms

7 Engineering-based Vanes, but usually simple Varies, but usually simple. Many use
models (e.g., APEX) some form of schemas
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Higher-Level Cognitive Functions

Learning

Planning

Decision Making

Situation
Assessment

Chunking, creation of
schemas, and production
learning online (incremen-
tal) and stable against
erroneous data

By incrementing weights
across a probability
distribution

Associative and perceptual
learning; operant
conditioning: sensory-motor
learning, leaming goals
(situations that allow need
satisfaction) and aversions
(situations or objects that
cause needs)

Common methods within
connectionist modules

None built in

(users can specify as
required by their
architecture)

None built in

(e.g.. Wright et al. 1996,
included simple forms of
deliberative mechanisms
and meta-management)

Usually not extant

Connections between tem-
plates used in planning

Does not plan, but can
remember plans

Built-in hill-climbing proce-
dure: action schemata (i.e.,
sensory-motor-pattems) are
recombined to form new
plans. If planning unsuc-
cessful or impossible due to
lack of information, tnal-
and-error procedures used
to collect environmental
information

Could be implemented in
rule modules

None built in

(users can specify as
required by their
architecture)

None built in

(users can specify as
required by their
architecture). Logan's A*
with bounded constraints
available, among others

Varies, some models do
well

Knowledge based

Iterative memory recall
process

Expectancy-value-
principle

Specific to module type.

Can vary

Includes BDI
computation model

None built in

(users can specify as
required by their
architecture)

Usually good; decision

making domain of these

models

Overt and inferred

Can learn a set of
assessments and
generalize these

Built in as part of problem
solving

None built in
(users can specify)

Includes BDI
computation model

None built in

(users can specify as
required by their
architecture)

Varnes, often implicit
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Architecture

Muttitasking

Serial/Parallet

Resource Representation

1 EPAM

2 SDM

3 PSI

4 COGENT

5 JACK as an example of BDI
architectures

6 Sim_Agent Toolkit

7 Engineering-based models
(e.g.. APEX})

Senal processing; learning done in
parallel

Fully parallel recall process, serial
recall of sequences

System tnes to fulfill different needs
(i.e., water, energy, pain-avoidance,
etc.); interrupts goal-directed
behavior to profit from unexpected
opportunities

Modules can work in parallel, but
information passed between them
senally

Supports multiple computational

threads handled safely within the
JACK Kemel—achieving atomic

reasoning steps

Discrete event simulation technique,
with rule sets within each agent time-
sliced, as well as different agents
being time-sliced

Varies, sometimes explicit models

Limited STM capacity, limited perceptual
and motor resources (uses time
parameters)

Architecture too low-level for
representation to be explicit

Allocation of time to run intention according
to strength of underlying need and
according to expectancy of success

Would vary with the knowledge included in
modules

Agents have time perception. Time can be
real or simulated (dilated, externally
synchronized, etc.}

Allocation of cycles per time-slice can be
made for each rule set, or for each agent.
No built-in memory resource limits. Will
differ for each architecture type created

Varies. Those that interact with simulations
more advanced
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Table 5.1: Comparison of Architectures (continued)

Goal/Task Management

Multiple Human Modeling

Modeling Human Performance

Implementation Platform

1 Bottom up + 1 main goal
per task simulated

2 None

3 There is a steady
competition of different
needs/motives to rule.
Strongest will win and
inhibit others

4 None built in. Users can
specify through module
selection and
programming

5 Built in. JACK Language
includes: wait_for
(condition), maintenance
conditions, meta-level
reasoning, etc.

6 None built in
(users can specify as
required by the
architecture)

Potential through muitiple EPAM
modules

None

Potential through multiple PSI
models with different
“personalities” by varying starting
parameters. Multiple agents can
run in same environment, see
each other, interact, and, to a
certain degree, communicate

None

Allows multiple agents, running
together or distnbuted, to interact
and communicate as a team or as
adversaries. Extensions to the
basic model (e.g., team models
also allowed)

Toolkit allows multiple agents to
sense one another, act on one
another, and communicate with
one another

Mac, PC (any system supporting
Common Lisp). Graphic environment
supported only for Macintosh

UNIX (easily ported)

Windows 95, 98, 2000, NT

UNIX (X windows). Microsoft Windows

Runs on all platforms that support JAVA
1.1.3 or later. Graphic components (i.e.,

development environment) require JAVA
2v 1.2orlater

Runs on any system supporting Poplog
(and for graphics, X window system).
Tested on Sun/Solaris, PC/Linux, DEC
Alpha/UNIX. Should also run on other
UNIXes and VAX VMS. Should work
without graphics on Windows NT Poplog

7 Vanes. Some advanced Some have none; some work in Varies. Not usually designed for
teams dissemination
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Table 5.1 Comparison of Architectures (continued)

Chapter 5. Recent Developments for Modeling

Architecture

Implementation Language

Support Environment

1 EPAM

2 SDM

3 PSI

4 COGENT

5 JACK as an example of BDI|
architectures

6 Sim_Agent Toolkit

7 Engineernng-based models
(e.g., APEX)

Common Lisp

C, JAVA

Pascal (Delphi 4)

Prolog

JAVA. JACK written in and
compiles into pure JAVA

Pop-11 (but allows invocation of
other Poplog languages (Prolog,
Common Lisp, Standard ML, &
external functions, e.g., C)

Varies

Lisp programming + editing tools. Some
graphic utilities for displaying eye
movements, structure of discrimination
tree, and task. Customized code used for
each task modeled

None

Delphi 4 features

Graphic and textual editors

JACK Make utilities, and all available
JAVA tools. JACK development
environment (JDE) provides GUI for
creating and editing agent structures.
Further debugging and visualization tools
under development

Poplog environment, including
VED/XVED, libraries, incremental
compiler, etc

Often simple
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Table 5.1: Comparison of Architectures (continued)

Modeling Human Performance

Validation

Comments

1 Extensive at many levels

2 None

3 Achievement data and parameters of behavior
compared between subjects and models in two
different scenarios (BioLab and Island). Different
human subjects can be modeled by varying
parameters

4 Would be by architecture. Some have been done by
modeling previously validated models

5 Would be by architecture. None known
6 Would be by architecture. None known
7 By model. Usually validated with expert opinion. Some

may be compared with data

EPAM models focus on single, specific
information processing task at a time. Not yet
scaled up to multitasking situations. Used in
high-knowledge domains (e.g., chess, with
about 300,000 chunks)

SDM should be seen as system component
({e.g., good way of representing long-term
memory for patterns and motor behaviors in
larger system)

Wide range of models here
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CHAPTER 6

Review of Recent Developments and
Objectives: Specific Projects

We now examine speeifie projects within the general applieation areas noted in
Chapters 2, 3, and 4, broadly grouped into projects that support the objectives in the
previous chapters, that is, of providing more complete perforimance, supporting integration
of models, and improving model usability. The format of the projeets follows the general
format used in Pew and Mavor (1998). Where appropniate, this summary also comments on
the feasibility and coneerns that may anse if the projects are implemented in Soar, a current
eommon approach for eomputer-generated forees. The estimates are uniformly optimistic to
allow eompanisons. The estimates are in terms of programmer or analyst time, and assume
adequate supervision and eooperation with other organizations.

6.1 Projects Providing More Complete Performance

The projects presented here address the issues raised in Chapter 2. They are grouped
into three main categones. We also note some potential additional uses for models of
behavior as well as eurrent uses in synthetic environments.

6.1.1 Gathering Data From Simulations

It 1s very clear and eonsonant with Pew and Mavor (1998, chap. 12) that data need to be
gathered to validate models of human and organizational behavior. An approach at which
they hint is to instrument synthetic environments. Synthetic environments should be
instrumented not only for playbaek, but also in a way to provide data for dcveloping and
testing models. While the data are not direetly equivalent to real-world behavior, as the
environment becomes more realistic the data should become more realistic as well.

A uniform representation for data from simulations should be ereated. This
representation should be readable by humans, at least in some formats.

Creating summary measures will also be nccessary. Otherwise the shecr volume of data
may preclude its analysis. The individual actions of eontrol are not likely to be useful on
their own (e.g., pressing an accelerator) but will be required to build higher-level
summaries. Creating these summaries is likely to represent an additional research agenda
item requiring Al, domain knowledge, and some understanding of bchavioral data.

The payback could be quite large for developing models. Analysis of data from
synthetic environments might also provide insights into the quality of the simulation (e.g.,
how quickly someone could act and whether they were limited by the simulation’s ability to
display information) and provide insights about the implementation of doetrine (e.g., how
often tank crews actually follow doctrinc). When done in cooperation with a simulator’s
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developers, the resources required for this task could be quite modest. Otherwise, it eould
take some time. Devcloping initial automated summaries is a 6- to 12-month effort.

6.1.2 Understanding Expectations of Behavior

Providing realistic behavior requires understanding what people cxpect from other
people and what aspeets of an adversary are neeessary for training. (These two may be quite
different.} In one sense, this means understanding the Turing test: what i1s necessary to
appear human? More important, however, is knowing what is necessary to train people. A
model that passes the Turing test and appears human might be weaker or unusual in some
way. Thus, training with the model might not result in transfer of learning or result in
learning an incorreet behavior.

A useful exercise would be to study which characteristics of behavior make a model
appear human (so-called believable agents). The model must start with competencies; it
must be able to perform tasks. It should also include errors, hesitations, and variations
in behavior.

Work with the Soar Quake-bot on how firing aecuracy and movement speed make
agents believable is an example of what is required (Laird & Duchi, 2000) to understand
what people think is human. The Soar Quake-bot has been evaluated on such things as firing
aceuracy with observers asked to rate its humanness. The measure of humanness, however,
does not reveal how good the Quake-bot is with respeet to training. Nor does it reveal what
aspects of the Quake-bot should be made more (or less) human to improve training. The
current belief is that appearing (or behaving) more human makes a better opponent to train
against, but we do not know of any evidence to support this belief.

Another example is the Fuzzy Logie Adaptive Model of Emotions (FLAME). In this
work (Seif El-Nasr, Yen, & loerger, 2000), several models of a pet that followed the user
around in a virtual house were tested for believability. The model that ineluded learning and
fuzzy behavior was the judged the best. While not a eomplete test, this type of project starts
to find out what makes agents believable through tests. In this example, learning and
emotions were both helpful.

A useful 6-month to 1-year study would be to examine a range of models and humans in
a synthetie environment, noting observers’ eomments and behavior toward a range of
behavior. It might be that these aspeets makc an agent appear human, but it might also
include implicit effects, such as second-order (or lagged) dependencies in behavior. The
results would be important for training and also useful for creating models used in analysis.
This project is similar to, but conceived of separately from, a similar call proposed by
Chandrasekaran and Josephson (1999) to develop a better understanding of how to and how
far to develop models.

The results are also essential for understanding how to help modelers. The results will
point out the most likely mismatches to be left in models because modelers do not consider
such behavior abnormal. This will provide suggestions about where comparisons with data
are particularly needed by modcls. As this is basieally experimental work, less resources are
needed, but the time to run the experiment and analyze the rcsults will take up to a year for
preliminary studies.
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6.1.3 Including Learning in Models

Work on creating agents in synthctic environments has been sueeessful, however, one
particularly useful aspeet that has not been modeled is learning. A worthwhile project would
be to take a learning algorithm and put it to use within a synthetie environment, either as
part of a problem solver or as an observer. There are a variety of leamning algorithms and
models that would be approprate. Some examples inelude: eonnectionism; one of the
hybrid learning architectures developed within the ONR program (Gigley & Chipman,
1999); Programmable User Models (Young, Green, & Simon, 1989b); Soar with ieaming
turned on; ACT-R; EPAM; or any of a wide variety of machine-learning algorithms.

Creating a model that learns will be difficuit. This task is large and would allow
multiple subprojects to be attempted. It eould be supported by a wide range of resourecs.
Including learning with problem solving has been difficult in the past, but it is likely to lead
to more accurate agents that may be useful for testing and devcloping tactics.

Soar models exist that function fairly well in a synthetic environment. If these eould be
used, a small project of a programmer-year or two should be able to creatc an initial modcl
that learns in a synthetic environment. Attaching a learning component to find regulanties in
behavior is likely to take at least that much time. Both projeets would provide potential PhD
topics and are broad enough to be supported by a wide range of resources.

6.1.4 Including a Unified Theory of Emotions

There are three speeifie projeets related to modeling emotions and other behavioral
moderators in architectures that we can propose: (1) adding general emotional efteets, (2)
adding reactive emotions, and (3) testing emotional models with pcrformance data. While
work is ongoing implcmenting models like this in Soar (Chong, 1999; Gratch, 1999) and
ACT-R (Belavkin et al., 1999), the domain is large. Projccts can range from a few months to
implement a simplc emotional effect to several years or dccades to incorporatc a
significant amount.

Adding general emotional affects. As noted abovce, it is possible to start to realize
emotions and affective behavior within toolkits like Sim_Agent and general cognitive
architectures like ACT-R and Soar. Including emotions will provide a more complete
architecture for modeling behavior and a platform for performing future studies of how
emotions affect problem solving. Ineluding emotions may also provide a way to duplicate
personality and provide another approach to aceount for appropriate variations in behavior.
Hudlieka (1997) provides a list of intrinsie and extrinsie behavior moderators (similar to the
eategories suggested in Ritter, 1993b) that eould be modeled. Boft and Lincoln (1988)
provide a list of regularities related to fatigue and other relatcd stressors that might be
considered for testing against a general modcl of emotional effccts. For example, by making
ACT-R’s motivation sensitive to local performanee (rule suceesses and failures), we have fit

the Yerkes-Dodson law (Belavkin & Ritter, 2000).

These models should move from applying to a single task to multiple tasks. They would
then beeoime modifieations to the architecture and thus reusable.
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Adding reactive emotions. Modeling reactive and long-term moderators as well as
slowcr-acting behavioral moderators i1s worthwhilc. The cffect of stress also changes the
statc of the competencc in important ways. A proportion of troops engaged in active combat
will becomc ineffective as a result of fear and stress-fatigue. Stress would also be increased
by the number of casualties taken by a given platoon, length of time without sleep, weather
conditions, pcrceived chance of survival, and so on. Modeling these effects at thc micro-
level of individuals, following known distributions, would advance thc realism of
simulations in interesting ways and support teaching existing doctrine.

In production system architectures, these emotions can initially be implemented by
changing the decision (rule-matching) procedure, adding rules to make parameter changes,
and by augmenting working memory to include affective information (e.g., an operator or
statc looks good or bad). These types of changes arc being applied to an existing model,
which matches adult behavior wcll, to better match childrecn’s more emotional behavior
(Belavkin et al., 1999). These emotional effects should improve the match to the children’s
performance by (1) slowing down performance in general, (2) slowing down initial
performancc as the child explores the puzzle driven by cunosity, and (3) abandoning the
task if performance is not successful. This work should be extended and applied
more widely.

Testing emotional models with performance data. Many of the theories of emotions
proposed have not been compared with detailed data. Partly this may be bccause there is not
always a lot of data available on how behavior changes with emotions. It is no doubt a
difficult factor to manipulate safely and reliably. But the modcls must not just be based
on intuitions.

The use of simulators may provide a way to obtain further data with some validity.
Bcetter instrumentation of somc primary features of emotions (e.g., heart rate, blood
pressure) i1s providing new insights (Picard, 1997; Stern, Ray, & Quigley, 2001) and will be
necessary for testing models of emotions.

Some argue that emotions are necessary for problem solving. Examples of brain-
damaged patients (e.g., Damasio’s Elliot [1994]), who have impaired problem solving and
impaired emotions, arc put forward. It is not clear that emotions per se are requircd, or if
multiple aspects of behavior are impaired as well as emotions by the trauma. Others arguc
from first principles that emotions (realized as changes in motivation duc to local success
and failure during problem solving in this examplc) can improve performance (Belavkin,
2001). A model compared with data may help answcr whether this is true. Clearly, Al
models of scheduling do not havc the same troubles schcduling an appointment despite their
lack of emotion.

6.1.5 Including Errors

There are two premises that underpin the modeling of crroneous behavior. The first
premise is that the attribution of the label error to a particular action is a judgment made in
hindsight. The identification of the erroneous action forms the starting point for further
investigation to identify the underlying reasons why a particular pcrson executed that
particular action in that particular situation. In other words, the crroneous action ariscs as the
result of a combination of factors from a triad of sources: thc person (psychological and
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physiologieal factors), the system (in the most general sense of the term), and the
environment (including the organization in which the system 1s deployed).

The seeond premise acknowledges that an error is simply anothcer aspect of behavior. In
other words, any theory of behavior should naturally encompass erroneous behavior. The
behavior ean be judged as erroneous only with respeet to a description of what eonstitutes
eorreet behavior.

Once these premises are aceepted, it becomes apparent that modeling erroneous
behavior is aectually an inherent and important part of modeling behavior. If the
psychological and physiologieal limitations of human bchavior are incorporated into a
model of human behavior, then particular types of crroneous behavior should naturally
occur in eertain specific situations. The corollary of this argument is that an understanding
of erroneous behavior can be used as the basis for evaluating models of behavior. So, if a
human performs a task correctly in a given situation, the model should also be able to
perform the task correctly in the same situation. If the situation is changed, however, and the
human gcnerates erroneous behavior as a result, the model should also generate the same
erroneous behavior as the human in the new situation, without any modifications being
required to the model.

Modeling error therefore depends on understanding the eoneept of error—its nature,
origins, and eauses—and eentral to this is the nced for an aceepted means of deseribing the
phenomenon (Senders & Moray, 1991). In other words, a taxonomy of human error is
required with respect to thesc tasks.

The utility of the taxonomie approach, however, depends on the understanding that the
taxonomy is gencrated with a particular purpose in mind. In other words, the taxonomy has
to reflect:

e A particular notion of what constitutes an error.
e A particular level of abstraction at which bchavior is judged to be erroneous.
e A particular task or domain.

There is a need to be very clear about the classes of errors and their origin in the models
so that the appropnate ones ean be ineluded. In the military context, for example, a major
source of error is communication breakdown. One approach to developing an appropriate
taxonomy of errors for the military domain is to use the seheme that lies at the heart of the
CREAM (Hollnagel, 1998). The CREAM purports to be a general purpose way of analyzing
human behavior in both a retrospeetive and a predietive manner. Although the method was
developed on the basis of several years of rescarch into human performance, mainly in the
process industries, it is intended to be applicable to any domain.

The CREAM uses a domain-independent dcfinition of what constitutes an erroneous
action (also callcd error modes or phenotypes). One of the goals of the CREAM is to be able
to identify the chain of preeursors for the various error modes. Identifying the chain is
achieved by means of a set of tables that define categories of actions or events. At the
highest level, there are three types of tables:
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e  Human (or opcrator),
e Technological (or system), and
e  Organizational (or environment).

Within these categories there are sub-catcgory tables. So, for example, the human tables
include observation, interpretation, planning, and so on.

The individual actions or events are paired together across tables on the basis of
causality or, to use a morc neutral term, in a consequent-antecedent relationship. When the
CREAM is used to analyze a particular accident or incident retrospectively, the aim is to
build up the list of possible chains of events and actions that led to the accident or incident.

The contents of thc tables are domain-specific, so the first step in developing the
taxonomy for agents in synthetic environments depends on identifying the appropnate
categories of cvents and actions for the military domain. These categories and the links
between individual actions or events will be generated from a combination of knowledge
elicited from domain experts and a review of the appropriate literature.

The second step is to generatc the possible chains of actions and events that precede the
various error modes, based on information available from reports of real accidents or
incidents. This process will involve access to desensitized accident or incident reports—like
thosc used in the Confidential Human Factors Incident Reporting Programme (CHIRP;
Grecn, 1990) originally operated by the RAF Institute of Aviation Mcdicine—that can be
analyzed and coded using the domain-specific CREAM tables generated in Step 1. Where
omissions from the tables are detected, or links between actions do not already exist, these
should be added to the tables.

The possible causal chains of events or actions generated by the second step will
provide the basis for a specification of behavior in a particular situation. Models of behavior
should yield the same sequences of actions and events in the same circumstances. The
specification of behavior can therefore be used to test the models of behavior for
compliance, during development, with the model being modified as appropriate to match
the spccification.

In addition, the results of the analysis of the incident behavior provide a basis for
evaluating the veracity of synthetic environments. Performance in the real world (as
described in the incident reports) can bc compared with the way people behave when
performing in the synthetic environment. There should be a high degree of correspondence
between the two. If there is a mismatch, the mismatch suggcsts that there is a difference
between the real world and the synthctic environment, which may be worth further
investigation to identify the sourcc of the difference.

One other beneficial side effect of the CREAM analysis is that the resultant chains of
actions and events can be used in training personnel to manage error. If common chains of
actions or events can bec identificd, it may bc possible to train personncl to recognize these
chains, and take appropriate remedial action beforc the erroncous action that gives rise to
the incident is generated.
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Initial models that include erroncous behavior can best be created with an existing
model. One to three years of work should lead to an initial model that includes some errors
and has been validated against human behavior.

6.1.6 Including a Unified Theory of Personality

It would be useful to identify features that lead to modeling personality, problem-
solving styles, and operator traits. While models that choosc between strategies have been
ercated, there are few models that exhibit personality by ehoosing between similar strategies
(although see Nerb, Spada, & Emst, 1997, for an example used to put subjects in a veridical,
but artificial, social environment). Personality will be an important aspeet of variation in
behavior between agents.

Including personality requires a task (and the model) to include multiple approaches and
multiple successful styles. It is these ehoiees that can thus appear as a personality. If the task
requires a specific, single approach, it is not possible to express a strategy. Psychology, or at
least eognitive psychology, has typieally not studied tasks that allow, or particularly
highlight, multiple strategies. Looking for multiple strategies has also been difficult because
it requires additional subjects and data analysis that before has not represented real
differences in task pcrformance. Differences in strategies, however, lead to variance in
behavior (e.g., Delaney, Reder, Staszewski, & Ritter, 1998; Siegler, 1987).

There appear to be at least the following ways to realize variance in behavior that might
appear like personality: learning, differences in knowledge, differences in utility theory and
initial weighting, and differences in emotional effects. Ineluding a subset of these effects in
a model would fulfill a need for a source of regular, repeatable differences between agents
in a situation.

All of the current cognitive architectures reviewed here and in Pew and Mavor (1998)
can support models of personality. These types of ehanges should be straightforward, as
long as there are multiple strategies. In Soar, personality ean be expressed as differences in
task knowledge, as well as differenees in knowledge about strategy preferences either
absolutely or based on different sets of state and strategy features. ACT-R appears to lcarn
better and faster which strategy to use compared with a simple Soar model, but ACT-R
requires additional state features (Ritter & Wallach, 1998). Models in both architcctures can,
however, modify their choice of strategics. The role of (multiple) strategies has been
investigated within the EPAM architecture in several tasks, sueh as eoneept formation
(Gobet et al, 1997) and expert memory (Gobet & Simon, 2000; Riehman, Gobet,
Staszewski, & Simon, 1996; Richman et al., 1995).

These models could also be crossed with emotional and other non-cognitive effects to
see how personality types respond differently in different circumstances (broadly defined).
This could even be extended to look at how teams with different mixes of personalities work
together under stress.

The amount of work to realize a model in this area will depend on the number of factors
taken into account by the model. Providing a full model of personality and how it interacts
with tasks and with other models is a fantasy at this point. However, a minimal pieee of
work would take an existing modcl and give it more of a personality. A morc extensive
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project over a year or two would apply several of these techniques and see how it starts to
match human data.

6.1.7 Including a Model of Situation Awareness and Rapid Decision Making

Novices have to do problem solving. Experts ean do problem solving but save effort
(or improve their problem-solving performance) by recognizing solutions based on the
problem. Viewed broadly, a model that does this transition starts to provide an
explanation of situation awareness and Rapid Decision Making (RDM) as a result of
expertise and recognition.

Able (Larkin, 1981) and its recent re-implementations (Ritter et al., 1998b) provide a
simulation explaining the path of development from novice to expert in formal domains
(i.e., those where behavior is based on manipulated equations such as physies or math). The
early (or barely) Able model works with a backward-chaining approach, that is, it starts with
what is desired and chooses domain principles to apply based on what will provide the
desired output. This approach is applied recursively until initial conditions are found. The
chunking mechanism in Soar gives rise to new rules that allow the model to use a forward-
chaining method that is faster. That is, from the initial conditions new results are proposed.
The rules are applied until the desired result is found. Students at the University of
Nottingham have applied the Able mechanism to several new domains. Their examples are
available at www.nottingham.ac.uk/pub/soar/nottingham/student-projeets.html.

Work eould be done to translate this mechanism, which has worked in Lisp and in
several versions of Soar, into other architectures and extend it from a simulation to a full
process model. This would require a rather modest amount of effort, less than a
programmer-year to get started if the programmer was familiar with Soar. Applying it in a
realistic domain would take longer.

6.1.8 Using Tabu Search to Model Behavior

The internal architecture of a ecombatant might be eonstrueted from a pereeptual module
that is elosely coupled to the synthetie environment and ean be modified by plug-in items
that alter the incoming data to be processed (night-vision aids, ete.). The results of
perception are crudely classified using a learning system such as a multi-layer perceptron,
which triggers a rapid emotional response and consequent reactive behavior. This behavior
might be generated using an SDM that finds the nearest match to previous seenarios and is
capable of producing a sequence of outputs rather than a single-state result. Both pereception
and emotional response are calibrated by a pereceptual and personality model that may be
unique to individual entities, albeit assigned from a known distribution.

The eognitive processing would be rule-based using an established cognitive model, for
example, ACT-R, with planning aectivities augmented by a Tabu search. There would be
interactions between the state of the entity (including its emotional state) and the cognitive
processing based on psyechological data on human performanee under stress. This approach
is similar and perhaps a generalization of Sloman’s meta-architecture, and the Soar and
PSI architectures.
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6.2 Projects Supporting Integration

The projccts presented here roughly address the issucs raised in Chapter 3. Integration is
approached in two ways hcre: integrating modcl components and integrating the model with
simulations in more psychologically plausible ways. Several projects described in this
subsection could be equally at home in the set of projccts for making modeling routine
becausc the two areas arc related.

6.2.1 Models of Higher-Level Vision

It has been argued that an understanding of higher-level vision is neecessary for
continued devclopment of models in synthetic environments (Laird, Coulter, Jones, Kenny,
Koss, & Nielsen, 1997) and we agree (Ritter ct al., 2000). Neisser’s (1976) perceptual cycle
is just starting to be explored with models.

There arc several areas of Higher-Level Vision (HLV) that arc of particular intcrest for
military modcling. These arcas includc:

e How information from long-term memory indicates incoming dangcr or
serious change in the environment.

e How HLYV dircets attention.

e How HLV integrates various aspects of information, or integrates
information occurring at different times.

e How HLV can be used to facilitatc lcarning.
e How HLYV can be used in planning and problcm solving.

To put 1t simply, HLV is at the interface between Lower-Level Vision (LLV) and
postulated memory entities such as productions, schemas, concepts, and so on. At the
present time, this interface is poorly understood, perhaps because LLV and long-term
memory are not undcrstood in a sufficicntly stablec way. (Howcver, see Kosslyn & Koenig,
1992, for neuropsychological hypotheses about HLLV.)

Most models of cognition such as Soar and ACT-R (actually, most architcctures
rcviewed by Pew & Mavor, 1998) use modelcr-coded information, which avoids dealing
with the interfacc between LLV and long-term memory constructs. Neural nets for vision
have been used to go from pixel-like information to features or even higher but have not
been incorporated into higher-cognition models. CAMERA (Tabachneck-Schijf, Lconardo,
& Simon, 1997), and to a certain extent EPAM (Ieigenbaum & Simon, 1984; Richman &
Simon, 1989), explorc ways in which featurcs may be cxtracted from low-lcvel
representation, and may be combined into long-tcrm memory constructs.

The rclationship of HLV and problem solving is undoubtcdly an area where morc
research should be carried out. For examplc, modcling instruction and training requires a
thcory of how low-lcvel acoustic input merges with low-level visual input and connects to
long-term memory knowledge. In some cases vehicles and gunfire will be heard rather than
seen and sounds will direet visual attention in the appropriate dircction. Perceptual modcls
of hearing are also wcll-developed and exploited with dramatic success in, for example, the
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MPEG-2 compression standard that is likely to form thc basis for much broadcast and
recorded sound in the future. The variancc among individuals is large for both auditory and
visual perception, and both processes arc degraded temporarily or permanently by intense
overload, as is likcly in a military environment.

Work extending this approach to crcate intcgrated architectures (Byme ct al., 1999; Hill,
1999; Ritter & Young, 2001) is ongoing. Significant progress will require at least a year-
long project, and a longer period would be more appropriate.

6.2.2 Tying Models to Task Environments

Tying cognitive models to synthetic environments in psychologically plausible ways
should be easier. There are two approaches that seem particularly useful and plausible that
we can ground with particular suggestions for work. They are consistent with Pew and
Mavor’s (1998, p. 200) short-term goal for perceptual front-ends.

The first approach is to provide a system for cognitive models to access ModSAF’s
display and pass commands to it. This approach has the advantage that it hides changes in
ModSAF from the programmer/analyst and from the model. The disadvantage is the need
for ModSAF experts, programmers, users, time, and money to make it work. There has been
such a system created for Soar models to use ModSAF (Schwamb, Koss, & Keirsey, 1994),
but it is our impression that this system, although it was quite useful, needs further
development and dissemination.

The second approach is to create a reusable functional model of interaction based on a
particular graphics system or interface tool (as does thc Nottingham Functional Interaction
Architecturc and ACT-R/PM). A functional rather than a complete model may be morc
appropriate here as a first step. This functional approach has been already created in Tcl/Tk
(Lonsdale & Ritter, 2000), Gamet and Common Lisp (Ritter et al., 2000), Visual Basic
(Ritter, 2000), Windows bitmaps (St. Amant & Riedl, 2001), Windows 98 objects (Misker,
Taatgen, & Aasman, 2001), and most recently in JAVA. They could be created in Amulet,
X-windows, Delphi, or a variety of similar systems, each of which allows models to interact
with synthetic environments through a better programming interface. A functional model
would then providc the necessary basis for improving the accuracy and psychological
plausibility of interaction.

This approach to providing models acccss to information in simulations could also
support creating cognitive models in general, such as for problem solving, working memory,
and the effect of visual interaction. These could be later assimilated back into models and
architecturcs in the synthetic environments.

An exccllent programmer very familiar with their language can now create an initial
system in about two weeks. Integrating and applying these modcls takes several months
to a year.

6.2.3 Ongoing Review of Existing Simulations

To provide for reuse and to understand the current situation, a review of simulation
systems used (for as broad a gcographic region as possiblc, working with allied nations if
possible) should be created that is similar to the listing in Pew and Mavor (1998, chap. 2
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Annex). This listing, for example, could initially be created by an intercalated ycar (co-op)
student and then maintained as part of standing infrastructure. This listing could provide an
initial basis for understanding what the total needs were and the totality of current
simulation efforts. Whilc the U.S. Defense Modeling and Simulation Office may do this in
the United States, we do not know of similar efforts in the United Kingdom.

6.2.4 Focus on a Flagship Task

Supporting all the uses of synthetic forees as shown earlier in Table 1.1 with a single
model of behavior is probably impossible in the short term. The uses of simulations in
operations research, training individual group behavior, and examining new matenials or
doctrine are too disparate to be met by a single approach. While the various levels and uses
of simulations mentioned here are related by the real world they all represent, it does not
appear to be possible in the next 5 to 10 years to integrate them to the extent to which the
real world is integrated.

While there may be some systems that allow multiple use, and therc will certainly be
some reuse between these areas, a focus for work must be selected. Therefore, a more
narrow focus on the most important uses should be adopted by funding agencies. Taking a
more focused approach appears to be happening in several plaecs already. A sclective focus
on the most approachable or natural set of uses is more likely to be successful in the short
term and may provide a better foundation upon which to build in the long term. Discussion
of these issues should be grounded, if possiblc, with a set of potential uses with possible
systems and domains that will be used in the next 5 to 10 years. Complete unification is not
likely in that time period, nevertheless significant reuse should be sought.

Having a foeus would also support the choice of a speeific application. Applications can
then bc chosen with a user audience in mind. Having a specifiec audience will help the
application to be useful and seen as useful by a well-defined user community.

Work that attempts to serve too many needs will serve all of them poorly. Projects and
research programs will have to pick a domain and an application (or two), and work with
them. This application could be an existing use or application or it could be a ncw use.
Work with simulations for training often have high payoffs. Augmenting existing training
would be a natural place to consider starting.

The students being trained could also be used to help test the simulation. Apocryphal
tales from MIT suggest that building computer-based tutors to deliver instruction is as
useful for learning as using the resulting tutors. Creating and validating these models would
be good training for such students as well.

6.2.5 A Framework for Integrating Models With Simulations

Perhaps the most significant eurrent requirement is a way to integratc multiple cognitive
and behavioral architectures into synthetic environments. Currently, it takes a large amount
of effort to introduce new models of behavior and connect them dircctly to simulations via
the Distnibuted Intcractive Simulation (DIS) protoeol. Coupling eognitive architeetures to a
simulation via ModSAF is probably marginally easier because ModSAF, whilc difficult to
use, provides physical models and an interface to the network. The left-hand side of Figure
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6.1 shows the organization of systems like Tae-Air Soar that interact with ModSAF to
generate behavior.

A worthwhile medium- to long-range goal would be to develop utilities to support
making a tool like ModSAF even more modular. The eore activities of supporting
eommunieation aeross the network for simulation and supporting the physieal model need to
be provided, but are not of partieular interest for modeling behavior.

Efforts have attempted to provide similar interfaces for Soar; however, they have never
been fully suceessful. They have made hooking up Soar easier but have not yet made it easy
(e.g., Ong, 1995; Ong & Ritter, 1995; but also see the most reeent work by Jones, 2001, and
Wallaee, 2001). Work on the Tank-Soar simulator (provided as a demo in the latest release
of Soar, Soar 8.3) might provide a path for this.

The right-hand side of Figure 6.1 shows how future systems might interact with
ModSAF using the same interface that users see through a simulated eye and hand designed
to allow models to interaet with synthetic environments (Ritter, Jones, Baxter, & Young,
1998a). The interface to the physieal simulation eould no doubt be made more regular and
easier to use so that other architectures, such as Sim_Agent, eould be hooked up to it. We
suspect this projeet might take a good programmer familiar with ModSAF about half-time
over a year beeause we had a similar system built in 2 weeks by someone who was an expert
in their graphie programming language. A much longer time should be allowed. This system
requires knowing ModSAF very well because it will make use of all of ModSAF and may
require extending ModSAF.

network support
ModSAF . ModSAF
physical model
automated GUI

GUl behaviour

eross eoml{ilation IS:i)I,T:/lflii;(;
Cog Arch

Cog Arch

Figure 6.1: On the left, a functional deseription of Tae-Air Soar and how it uses ModSAF. On
the right, a pereeptual interface to ModSAF.
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6.2.6 A Framework for Integrating Knowledge

Currently, there are multiple knowledge sets (as modcls) in different simulations that
cxist in multiple formats. It would be useful to create a framework for integrating multiple
knowledge sets, allowing the knowledge to be reused in different simulations.

One way to create a framcwork for integrating knowledge is to create a task editor that
eould take a knowledge set and eompile it for different architcctures. The editor would have
to be based on a high-level description of knowledge, such as generic tasks (Wielinga,
Schreiber, & Breuker, 1992). These generic tasks would then be eompiled into things such
as an ACT-R or Soar rule-set.

There are potentially huge payoffs from this very high-risk project. First, this projeet
would provide a way to reuse knowledge in multiple simulations. Seeond, the rcuse that
would arise would help validatc models and might provide a way forward for validating
architectures. Third, this project would provide another way of documenting behavior
models. The (presumably) graphic representation would allow others to browse and
understand thc model on a high level. Fourth, it would assist in writing models. In most
cases, there are a lot of low-level details in creating these models that are not of thcoretical
interest but require attention, such as using the same attribute name eonsistently (recent Soar
interfaces now support this). A high-level eompiler for knowledge like this would bring with
it all the advantages traditionally assoeiated with high-level languages. When done for Soar,
the higher-level language allowed models to be built two to three times faster
(Yost, 1992, 1993).

PC-Pack (www.epistemics.co.uk) is a potential tool to start building upon.
Implementing an initial, demonstration version of this approach would take a good
programmer 6 to 12 months. Putting it to use would take longer.

6.2.7 Methods for Comparing Modeling Approaches

We find ourselves in a position where a number of different approaches to simulating
human behavior arc available. Some of these approaches, at least, are based on datasets
close enough to see themselves as rivals, and make eompeting elaims about their suitability
and quality. How can we assess and compare them?

There can, of course, be no one method that answers such a question. Earlier ehapters of
this report have diseussed how practical considerations such as usability and
communicability of models come into play as well as scicntific qualities such as agreement
with data. Thus, a widc rangc of comments about a model or architecture can be relevant to
choosing between them.

However, thcre are somc mcthods available that are too loose and varied to constitute a
“technique” but are uscful nonetheless for comparing and eontrasting such differing
approaches. They take the form of matrix exercises, in which a range of modeling
approaches are pitted against a battery of eonerete seenarios to be modeled. Young and
Barmard (1987) provide the basic rationale for such a method and explain how it can be used
to judge the fit and seope of a modeling approach. They argue, first, that the modeling
approaches need to be applied to conerete scenarios. It is not suffieient to try comparing
approaches on the basis of their “features” or “charaeteristics.” Second, it is important to use
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a range of scenarios. Taking just a single casc will incvitably introduce a bias towards or
against certain approaches, and will fail to provide an indication of their scopc. Young,
Barnard, Simon, and Whittington (1989a) provide a short cxample of such a matrix exercise,
and show how the cntries in the matrix can be interpreted.

This kind of matrix excrcisc derives from thc idca of a “bake-off” bctween rival
approaches but also differs in important respects. There is unlikcly to be a “winner,” one
approach that is regarded as thc best in all respects. Moreover, the matrix exercise is
fundamentally cooperative rather than competitive. Instead of finding the ““best” approach,
bake-offs providc a tool for probing the scope of applicability of the different approaches,
and investigating their relative strengths and weaknesses, advantages and disadvantages, for
later modification and fusion. Pew and Mavor appear to call for this kind of activity (1998,
pp- 336-339) as well.

Some exercises of this kind have been performed in public. At the Research Symposia
associated with the CHI conferences in 1993 and 1994, Young (in 1993) and Young and C.
Lewis (in 1994) organized such matrix exercises on the design of an undo facility for a
shared editor (1993), and on the analysis of the persistent unselected window error and of
the design of an automated bank-teller machine as a walk-up-and-use device (in 1994).
Furthermore, there are precedents for such an exercise in a military research context. In
1993, NASA funded a comparative study of models of pilot checklist completion. The
Office of Naval Research has funded, on a longer time scale, multiple analyses and
modeling of several interactive tasks using hybrid architcctures (Gigley & Chipman, 1999).
The speech recognition community in thc United States uscs this approach in a quite
competitive way as well.

The U.S. Air Force has recently started a similar program called Agent-Based Modeling
and Behavior Representation (AMBR) to explore models of complex behavior
(www.williams.af.mil/html/ambr.html). This multi-team project comparing four cognitivc
architectures was recently reported at the 2001 Computer Generated Forces Conference. For
an overview, see Gluck and Pew (2001a; 2001b); Tcnney and Spcctor (2001) provide a
summary of the model to data fits in the most recent comparison round. Several more
iterations of comparisons across architectures using different types of tasks are planned.

A final but important point about such an exercise is that it cannot be done successfully
inexpensively. The exercise requires earmarkcd and realistic funding to provide useful
results. A considerable amount of work is required: first in negotiating, agreeing, and then
specifying a set of concrete and clearly described scenarios, idcally with associated
empirical data; and then subsequently for applying the modeling approaches to thc
scenarios, performing the comparisons, and drawing conclusions. Multiple research groups
are uscd, and the funding has becn leveraged by the groups’ existing work and multiple
funding sources.

6.2.8 (Re)implementing the Battlefield Simulation

There are strong arguments for implemcenting communicating agents and intra-agent
processes in JAVA. These are discussed in Bigus and Bigus (1997), and in the context of
JACK Intelligent Agents by Busetta et al. (1995b). In fact, there arc powcrful arguments for
building the entire synthetic agent simulation in JAVA as described below. This is possible
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within the Higher-Level Architecture (HLLA) framcwork. Implementing Soar in JAVA has
also been mootcd (Schwamb, 1998), as well as ACT-R (see www_jactr.sourceforge.net for
information on a preliminary JAV A implecmentation of ACT-R 4, as of May 2001), although
the usability of thesc architectures would suffer for this.

A core system implcmentation is needed that can then be accessed through Application
Programming Interfaces (APIs). Supporting software is available for this, but any softwarc
could be developed for the purpose, provided it conformed with the standard. The corc
system might bc writtcn in JAVA or any other language provided only that an API is
implemented. Similarly, entities may be written in any language, or several, provided that
they set up calls to the API specification. There arc a number of arguments for using JAVA
as the basis for both individual cntity simulation and for building a corc system to the HLA
specification. Thesc are described below.

The single most attractive advantage of developing a synthetic battlefield simulation within
a JAVA environment lies in the capabilitics available within a Remotc Method Invocation
(RM]) that forms part of the JAVA run-time environment. This is a distributcd object modcl
with some similarities to Microsoft’s Distributed Component Modcl (DCOM)® but with the
advantage that it is cffective on any platform that supports a JAVA run-time environment. It
goes well beyond traditional remote procedure calls being entirely objcct-based, even allowing
objects to bc passed as parametcrs. Objcct behavior as well as data can be passed to a remote
object in a seamless and transparent way. A mortar weapon bcing passed as an argument to an
individual infantry man cntity and arriving complete with its complement of munitions and
ability to be fired gives a picture of this capability. Thc JAVA run-time cnvironment also
supports a naming and directory service API (JAV A JNDI) that allows the objects of RMI calls
to be found. (For more details of this see www.javasoft.com/products/jndi/index.html.)

To show how such a service might be used, suppose that a simulation of an individual
paratrooper has bcen developed. This simulation is a uniquely named JAV A object that can
bc invoked on any machine on the network used for the simulation. The JAVA Naming and
Directory Interface (JNDI) service will inform a process about which machines have a
suitable simulation available. To take this an important stage further, wc usc a class-factory
object to produce the individual paratroopcr objects. This class factory might use
randomized parameters to make each entity distinct but fitting a known distribution (like
Cabbage-Patch Dolls®). To introducc thesc cntities into the simulation, a process would ask
the naming service for a suitable class-factory object. This might be on one of any number
of machines and is thercfore cxtremely robust against damagc to the network. The class
factory can then bc asked to produce any number of paratrooper cntities, each of which (in
JAVA) is capable of serializing itself to any other machine on the network, and running
there. Indeed, the simulation can be moved from machinc to machine at will, perhaps in
response to a condition such as imminent power failure.

This approach would also support testing new platforms. A manufacturcr might develop
an improved simulation of a Tomado fighter-bomber. They then could introduce a new
machine with a suitably rcgistered class-factory object. Once this was connccted to the
nctwork, the new simulation would be immediately available even if this were done while a
simulation was running. No relinking, recompilation, or cven pause in the simulation would
be needed. The objects could be dcfined in conformity with the HLLA standard.
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JAVA also supports secure communieations and has wcll-developed APIs for database
eonnectivity and for driving graphies deviees. An attraetive user interface is very mueh
easier to develop using the JAVA Foundation Classes (JFC) than, for example, using X-
Motif. In addition, if a Just In Time (JIT) eompiler is available to the RTE, programs
developed in JAVA show little performanee degradation in eomparison with C++.

A synthetie environment eould be developed using facilities offered by the JAVA run-
timec environment and existing APIs that would eome mueh eloser than existing simulations
in meeting the design goals of maintainability, versatility, and robustness. This approaech
would have to be agreed upon by multiple eommunities and requires a large amount of
resourees to be applied uniformly.

6.3 Projects Improving Usability

The projeets presented here roughly address the issues raised in Chapter 4. This seetion
reviews several possible projects for making model building more routine. For praetieal
reasons, it is useful to make the model-building proeess more routine. It is also important for
theoretieal reasons. If the models eannot be ereated within a time eommensurate with
gathering data, the majority of the work will continue to be data gathering beeause theory
development will be seen as too difficult.

6.3.1 Defining the Modeling Methodology

There is not yet a definitive approach or handbook for building models that can also be
used for teaching and practicing modeling cognitive behavior. Newell and Simon’s (1972)
book is too long and mostly teaches by example. Eriesson and Simon’s (1993) book on
verbal protoecol analysis has eomments on how to create models; although useful, the
comments are short. VanSomeren, Barnard, and Sandberg (1994) provide a useful text,
although it is slightly short and some of the details of going from model to data are not
speeified (if indeed they can be). Baxter’s (1997) report and Yost and Newell’s (1989)
artiele are useful examples of the proeess, but both are tied to a single architeeture and not
widely available. There are other useful papers worth noting, but they are short and not
eomprehensive (e.g., Kieras, 1985; Ritter & Larkin, 1994; Sun & Ling, 1998).

Rouse (1980) has also made an attempt at deseribing the modeling process. He
identifies the following steps as forming an important part of the modeling process:
(1) definition, (2) representation, (3) ealculation, (4) cxperimentation, (5) comparison, and
(6) iteration. Rouse mainly foeuses on the representation and calculation aspeets of
modeling, particularly from an cngineering point of view. He dcseribes several
methodologies, including eontrol thcory, queuing theory, and rule-based produetion
systems. He also provides a short tutorial on several of these modeling methods together
with practical examples of systems engineering models. The examples are taken from a
wide variety of domains ineluding aviation, air traffie eontrol, and industrial proeess eontrol.
It is not a complete treatise on human behavior, but does provide suggestions for methods
that may be useful in modeling eertain aspeets of human behavior.

Similar tutorials and methodological summaries should bc created until they converge.
The results will be useful to practitioners and those leamning to model; the latter will be an
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important audience as this ficld grows. The output is most likely to rcquire a textbook. A
year to several years of support would significantly help create this set of learning materials.

6.3.2 Individual Data Modeling: An Approach for Validating Models

What is the best way to makc theoretical progress in the study of behavior? Is it to
devclop micro-theories that explain a small domain or to aim at a higher goal, and develop
an overarching theory covering a large number of domains—a unified thcory? Modem
psychology, as a field, has tended to prefer micro-theories. Unified thcorics have rcgularly
appeared in psychology—think of Piaget’s (1954) or Skinner’s (1957) theories—but it is
generally admitted that such unified theories have failed to offer a rigorous and testable
picture of the human mind. Given this relatively unsuccessful history, it was with interest
that cognitive science obscrved Newell’s (1990; see also Ncwell, 1973) call for a revival of
unified thcories in psychology.

One of the reasons for the limited success of Newell’s own brand of UTC is that the
methodology commonly used in psychology, based on controlling potentially confounding
variables by using group data, is not the best way forward for developing UTCs. Instead,
Gobet and Ritter (2000) proposc an approach, which they call Individual Data Modeling
(IDM), where (1) the problems related to group averages are alleviated by analyzing
subjects individually on a large set of tasks, (2) there is a close intcraction bctween theory
building and experimentation, and (3) computer tcchnology is used to routinely test versions
of the theory on a wide range of data. They claim that there are significant advantages here,
that this approach will also help traditional approaches progress, and that the main potential
disadvantage—Ilack of generality—may be taken carc of by adequate tcsting procedures.

IDM offers several particular advantages in this area. It does not require as much data
because the data will not be averaged but comparcd on a fine-grained level. Not requiring a
large amount of data is attractivce when the data are detailed or expensivc to acquire, or
where the model makes detailed predictions. The other advantage is that it provides a model
that produccs more accurate bechavior on a detailed level. It is this detailed level of behavior
that will be necessary to not only allow a model to appear human in a Tuning test, but also
lead to accurate training results because it performs like a comparable colleague or foe.

Work using [DM is ongoing at the University of Nottingham and at Pennsylvania State
University. A full test would require one to two years of work to gather data and compare it
with a model. Developing the IDM methodology and applying it could be combined with
other projects, however, becausc it is a methodology and not a feature of bchavior to include
in a model.

6.3.3 Using Genetic Algorithms to Fit Data

There are two potential uses of genetic algorithms worth highlighting. The first is for
generating behavior as described above in Section 5.2.1. The sccond is for optimizing
modcl-fits by adjusting their parameters (Ritter, 1991). Most model-fits have been
optimized by hand, which leads to absolute and rclative performance problems. In absolute
terms, researchers may not be getting optimal performancc from their models. In relative
terms, comparisons of hand-optimized models may not be fair. (Sometimes even one model
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is optimized and the other not.) In the case of models with multiple paramcters (with
submodels to includc), this job is not tractable by hand.

The rcsults obtained by optimizing models with genetic algorithms suggest that
optimizations done by hand are likely to be inferior to those done by genetic algorithms
(Ritter, 1991) or by other machine-learning techniques (Butler, 2000). Use of genctic
algorithms (or similar techniques) would improve performance in absolute terms, provide
fairer comparisons between models, and encourage the inclusion of parameter set behavior
in model comparisons. Several years of a PhD student working within a project with a
model to optimize is probably a good way to progress work in this area.

This optimization should initially be done with an cxisting model so that the developers
of the interface have a ready-made model and audience. The basic approach is simple and
robust, and should be straightforward to dcmonstrate. Making the optimization routine and
portable are separate and more advanced steps, so this project could take almost any amount
of resources, ranging from a month to several years.

6.3.4 Environments for Model Building and Reuse

There remains a need for better environments for creating models. Few modeling
interfaces provide much support for the user to program at the problem-space level or even
the knowledge level, although the COGENT interface is interesting as an example
of usability.

Soar, in particular, needs a better interface. While there is now a modest interface, even
the latest versions of the Soar interface (Kalus & Hirst, 1999; Laird, 1999; Ritter et al.,
1998b) are not as advanced as many expert system shells and are just becoming as
comprchensive as the previous, Lisp-based version (Ritter & Larkin, 1994). The Soar
interface is, however, providing increasing amounts of support at the symbol level (Jones,
Bauman, & Laird, 2001; Roytam, 2001) and higher, including model-specific displays
(Jones, 1999b). TAQL (Yost & Newell, 1989) and Able (Ritter et al., 1998b) have been
moderately successful, but modest attempts to create high-level tools in Soar, for example.
Gratch’s (1998) planning-level interface should be expanded and disseminated as a
modeling interface. Knowledge acquisition tools and techniques (e.g., Cottam & Shadbolt,
1998; O’Hara & Shadbolt, 1998) might be particularly useful bases upon which to build.

Associated with this project would be general support for programming. This includcs
lists of frequently asked questions, tutorials, and generating models or model libraries
designed for reuse. These libraries should eithcr exist in each architecture or in the general
task language developed in the previous task. These would serve as a type of default
knowledge for use in other applications. Wc can already envision libraries of interaction
knowledge (about how to push buttons and search menus), arithmetic, and simple
optimization like the default knowledge in Soar.

Work on improving the modeling interfaces for cach architecture should be incorporated
as part of another modeling project so that the developers of the interface have a ready-made
audience. There are multiple additions that would be useful and multiple approachcs that
could be explored, so this project could take almost any amount of resources, ranging from a
month to several years.
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6.3.5 Automatic Model Building

Most proeess models induced from protoeols are ercated by hand. There has been some
work to do this automatically or semi-automatically with machine-learning techniques.
Semi-automatic model generation is done in the event-structure modeling domain (a
soeiological lcvel of social events) by a program called Ethno (Heise, 1989; Heise & Lewis,
1991). Ethno iterates though a database of known events finding those without known
precursors. It presents these to the modeler, querying for their precursors. As it runs it asks
the modeler to ereate simple qualitative, non-variablized token-matehing rules representing
the event’s eausal relationships based on social and scientific processes. The result at the
end of an analysis is a sct of 10 to 20 rules that shape soeiological behavior in that area. In a
sense, the modeler is doing impasse-driven programming (i.e., what is the next preeursor for
an uncovered event not provided by an already existing rule?). After this step, or in place of
it, the modeler can compare the model’s predictions with a series of actions on a
sociologieal level (a protocol in the formal sense of the word). The tool notes whieh actions
could follow and queries the modelcr based on these. Where mismatehes oceur, Ethno ean
present several possible fixes for configuration. Incorporating the model with the analysis
tool in an integrated environment makes it more powerful. It would be a short extension to
see the social events as cognitive events in a protocol.

Stronger methods for building models from a protocol are also available. Cirrus
(VanLehn & Garlick, 1987) and ACM (Langley & Ohlsson, 1984) will induce decision trces
for transitions between states that could be turned into produetion rules given a deseription
of the problem space, ineluding its elements and the eoded aetions in the protoeol. Cirrus
and ACM use a variant of the ID3 learning algorithm (Quinlan, 1983). (ID3 induces rules
that deseribe relationships in data.)

These tools look like a useful way to refine process models. Why is automatie ereation
of process models not done more oftcn? Perhaps it is because these tools do not ereate
complete process models. They take a generalized version of an operator that must be
specified as part of a process model. It could also be that finding the conditions of operators
is not the difficult problem but that creating the initial process model and operators is. It
eould also be that it is harder to write process models that can be used by these machine
learning algorithms. In any case, thesc methods should be explored further.

Diligent (Angros, 1998), Instructo-Soar (Huffman & Laird, 1995), and Observo-Soar
(van Lent, 1999) are approaches to ereate models in Soar that learn how to perform new
tasks by observing behavior and inferring problem-solving steps to duplicate them. Related
models have been used in synthetic environments (Assanie & Laird, 1999; van Lent &
Laird, 1999). They have had limited use but suggest that lcarning through observation may
be a way to create models as it is an important way that humans learn. Their lack of use
could simply be due to the faet that they are novel software systems. As novel systems they
are probably diffieult for people other than their developers to use and will have to go
through several iterations of improvement (like most pieees of software) before they are
ready for outsiders. With a small user base (so far), the need has not forced software
development, whieh has further deereased their potential audienee.
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Automatic modeling tools need to be developed. Machinc-lcamning algorithms and
theories of cognition are dcveloped enough that this could be a very fruitful approach. A
several-year effort here could yield large benefits of more routine modeling.

6.3.6 Improvements to ModSAF

A major problem with ModSAF is usability. ModSAF is large and has a complicated
syntax. Users report problems learning and using it. One way to improve its usability might
be a better interface; better manuals and training aids might also be useful.

The approach used by models of behavior to interact with basic simulation capabilities
such as ModSAF needs to be regularized. A fundamentally better approach might be
possible. There exists an interface between ModSAF and Soar that partly provides a model
eye and hand. This eye/hand could be improved to provide a more abstract interface to
ModSAF, one that might be easier to use (Schwamb et al., 1994).

One thing we have repeatedly noted is that getting models to intcract with simulations is
more bearablc when both are implemented within the same dcvelopment environment.
When they are not, work proceeds much more slowly (Ritter et al., 2000; Ritter & Major,
1995), requiring a mastery of both environments. The situation is cxacerbated because the
development and use of any communication facility tends to be an ill-defined problem with
numerous wild subproblems (i.e., problems where the time to solution can be high and with
a large variance, that is, not easily predicted). So, for example, although the ModSAF Tac-
Air system (Tambe, Johnson, Jones, Koss, Laird, Rosenbloom, et al., 1995) appears as if it
was developed using joint compilation techniques, it was probably difficult to use because it
implements communication between ModSAF and the Tac-Air model using sockets.
Although informal communication with researchers in the Soar and robotics communities
suggest that the use of sockets may be becoming more routine, this has not always
been the case.

6.4 Other Applications of Behavioral Models in Synthetic Environments

There arc numerous ways that behavioral models could be applied outside the military
domain. Wc will cxamine four of them here.

The most obvious additional application of the models arising from approaches
proposcd in this rcport is in the provision of automated support for system operators. This
support can take the form of intelligent decision-support systems or embeddcd assistants
that guide operator behavior. There are some existing applications, most notably the Pilot’s
Associate (Geddes, 1989), its derivative, Hazard Monitor (Greenberg, Small, Zenyah, &
Skidmore, 1995), and CASSY (Wittig & Onken, 1992), all from the aviation domain. In the
United Kingdom, the Future Organic Airborne early warning system is attempting to insert a
knowledgc-based system into the Osprey aircraft and radar simulation to assist users.

These assistants, becausc they have a model of what the uscr is likely to do next, should
be able to assist the user: if not by performing the task, then by preparing materials or
information, or by modifying the display to help distinguish betwecn alternatives or make
performing actions easier. In the past, such assistants have had only a limited ability to
model users. With increased validity and accuracy, these models may become truly useful.
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The second application is in edueation and training. The uses in education havc been
fairly well illustrated by Anderson’s work with eognitive modcl-based tutors (Anderson,
Corbett, Kocdinger, & Pelletier, 1995). In training, behavioral models can be used to
provide cxperts to emulatc and thc same knowledge can also be uscd to debrief studcnts’
performanees (Rittcr & Fcurzcig, 1988). The knowledge ean also bc used to populate
adversarics and collcagues in the same environment (Bloedorn & Downcs-Martin, 1985).

Training needs cxist outside the military in several domains where dynamic modcls are
neeessary. Mining, for examplc, is starting to use virtual reality to train simple tasks
(Hollands, Denby, & Brooks, 1999). Virtual reality is already being used to train hazard-
spotting, avoiding mine machinery as a pedestrian, and driving vehicles underground
(Schofield & Denby, 1995). A wcb scareh on virtual rcality and training will indicate a wide
range of other arcas of application as well.

The third applieation is in entertainment. This has been proposcd for some time as an
applieation. A recent report by the U.S. National Research Council (Computer Seienee and
Teleeommunications Board, 1997) suggests that is it possible to use synthetie cnvironments
and the behavioral modcls in thcm for entcrtainment. This is currently being done by the
Institutc for Creative Tcchnologies at the University of Southern California.

The fourth application is in systems analysis. The bchavioral models can be uscd to
examine diffcrent system designs to mcasure errors, processing ratcs, or cmergent strategies.
To return to mining again, truek models in a simulation ean be used to examinc road layouts
in mines (Williams, Schoficld, & Denby, 1998).

6.5 Summary of Projects

We have laid out important objectives for models of behavior in synthetie environments
in the important areas of providing more complete performancc, increased integration of the
models with each other and with synthetie environments, and improved usability of the
modcls. A wide range of funding bodies may be interested in supporting these projects
because most of thesc projeets have both cngincering and scicntific results. They will not
only improve cnginecring modcls of human behavior, but thcy will also improve our
understanding of bchavior and our general scicntific ability to predict and model human
bchavior generally.

These proposals, taken as a whole, eall for several broad and general researeh programs.
They suggest scvcral moderating variables that affect cognition, ineluding emotions and
behavioral moderators, personality, and intcractions with the environment, which should be
included in cognitive architectures. They argue for ereating or moving towards a morc
uniform format for data and models and a morc clearly dcfined approach for modcling.
There are also several eonerete suggestions for making modeling casier and more routine,
including providing more usable modeling environments and supporting automatic modcl
generation. Finally, wc wcerce able to suggest some furthcr applications of models of behavior
in synthetic environments.
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APPENDIX B

Description of Soar and ACT-R

Soar and ACT-R are two of the most commonly used cognitive architectures. They can
be seen as theorics of cognition realized as sets of principles and constraints on cognitive
processing, a cognitive architccture (Ncwell, 1990). They both provide a conceptual
framework for creating models of how people perform tasks. They are thus similar to other
unified theories in psychology, such as PSI and COGENT.

Both Soar and ACT-R are supported by a computer program that rcalizes those theories
of cognition. There are debates as to whether and how the theory is different from thc
computer program, but it is fair to say that they are at least highly related. It is generally
acknowledged that the program implements the theory and there arc commitments in the
program that must be made to create a running system that are not in thc theory—places
where the current theory does not say one thing or another.

As eognitive arehiteetures, their designers intend them to model the full breadth and
width of human behavior. Such cognitive architecturcs, including the ones discussed in this
report, do so to a greater or lesser cxtent, usually with the areas covcred increasing
monotonically over time. This approach to modeling human cognition is explained in books
by Newell (1990) and Andcrson (Anderson, 1993; Anderson & Lebiere, 1998). These books
also provide introductions of Soar and ACT-R.

Further information on both Soar and ACT-R are available from the references cited
here, as well as the sources included in the bibliography at the end of this appendix. The
sourccs in the bibliography were used to write this appendix, particularly Johnson (1997),
Jones (1996a, 1996b), and Ritter (2001).

B.1 Background of Soar and ACT-R

Soar and ACT-R are each based on a sct of different thcoretical assumptions, reflecting,
largely, their different conceptual origins. Soar was developed by combining three main
elements: (1) the heuristic search approach of knowledge-lcan and difficult tasks, (2) the
proccdural view of routine problem solving, and (3) a symbolic theory of bottom-up
learning designed to produce the power law of learning (Laird, Rosenbloom, & Newell,
1986). However, many of the constraints on Soar’s theoretical assumptions consist of
general characteristics of intelligent agents, rather than detailed behavioral phenomena.
Soar’s outlook is more biased towards performance becausc it arose out of an Al-bascd
tradition.

In contrast, ACT-R grew out of detailed phenomena from memory, learning, and
problcm solving (Andcrson, 1983, 1990; Singley & Anderson, 1989). ACT-R is thus suited
more for predicting slightly lower-lcvel phcnomena, and is slightly more suited for
predicting reaction times more accurately, particularly for tasks under 10 seconds in
duration. These differences are relative; both architectures have been used for both high-
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and low-level modcls, with attention paid to both performancc and time predictions. ACT-
R’s outlook is more biased towards prcdicting reaction-timc means and distributions
because it arose out of a more experimental psychology tradition.

B.2 Similarities Between Soar and ACT-R

Soar and ACT-R can bc seen as similar in numerous ways. They both have two kinds of
memory, declarative (facts) and procedural (rules), although they represent these itcms
differently. Typical instantiations of them now have input provided through a model of
perception and output buffered through a model of motor behavior (Byrne, 2001; Chong,
2001; Ritter et al., 2000).

Both Soar and ACT-R model behavior by reducing much of human behavior to
problem solving. Soar does this rather explicitly, being based upon Newell’s information
processing theory of problem solving (Newell, 1968), whereas ACT-R merely implies it by
being goal-directed.

In both architectures these memories are conceptually infinite, with no provision
being made for the rcmoval of any memory item in ACT-R (the Soar architecture does
perform removal of declarative memory, which therefore can be seen as a type of short-
term memory). Manipulation of declarative memory can be accomplished by adding new
items or changing existing ones. For procedural memory, rules may only be added to
both architectures.

The course of processing involves moving from an initial state to a specified goal
state. ACT-R has only one possible goal state (Version 5), whercas Soar may have
several of them arranged in a stack. Movement between the initial and goal states usually
involves the creation of sub-goals to accomplish the various parts leading up to the
satisfaction of the goal.

Both ACT-R and Soar maintain a goal hierarchy where each subsequent sub-goal
becomes the focus of the system. In ACT-R, these must be satisficd in a serial manner and
in the reverse of the order they appear in the hierarchy (which is not directly visible to both
the model and the modeler). Soar generally proceeds in a serial way as well, but is capable
of removing (or solving) intermediate sub-goals should the current problem solving resolve
a sub-goal that is much higher in the goal hierarchy. This difference makcs ACT-R
potentially less reactivc, although work is in progress to make ACT-R more reactive
(Lebiere, 2001).

B.3 Differences Between Soar and ACT-R

There are also fundamental differences between the two architectures. Soar only moves
between states through changing the state as part of a decision procedure, which rules can
vote on but cannot directly cause. In Soar, when no more productions can fire, an operator is
selected or a state is modified. This whole process is called a decision cycle. Where an
operator cannot be selccted (e.g., due to preferences for the set of operators conflicting cach
other or not being complete), a sub-goal is created with a goal to choose the next operator.
Movement betwecn statcs is done in ACT-R by firing productions, which may change the
statc and goal stack directly.
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Soar allows multiple rules to fire in parallcl. This may lcad to impasses because the
knowledge in thc rules may suggest differcnt operators, but problem solving is available to
resolve this. In ACT-R, when the conditions of several productions are met, a conflict
resolution mechanism selects the production that it cstimates to have the highest gain.

Learning in Soar occurs only for production memory. New rulcs are created by the
architecture whenever a sub-goal is resolved, such that when next encountering the same
situation, the new production fires without the necd to enter a new sub-goal. This type of
information can inctude which operator to sclcct, or how to implement an operator. These
rules tend to be atomic, and in nearly all cases can bc sccn as immcdiately fully learned.
This learning mechanism (chunking) can implement a wide range of lcaming effects,
including long-term declarative memory learning—for long-term declarative information is
represented solely as the result of procedural memory.

ACT-R lcarning involvcs both declarative and procedural memory. When rules fire they
become stronger, and as declarative memories are used more they arc strengthened as well.
Each production also has an expected gain value based on its probability of success and its
cost and the current goal’s valuc. The expected gain is used for conflict resolution; the
production with the highest expected gain is selected when scveral productions are possiblc
matches. The more often the production mcets with later success (c.g., the sub-goal ends up
being solved), the higher this probability for the rule will become. This strength also
influences the activation of the declarative memory items that are matched by the condition
of the produetion, and also the rule execution time.

Each item in declarative memory has an associatcd activation that changes based upon
how often it has been used, and how strongly it is associated with other items that arc being
used. The more often an item is used, the higher its base level activation will become. The
more strongly associated an itcm is with ones that are being uscd, the more chance that item
has for having its activation raised.

A rule learning mechanism is less often uscd in ACT-R modcls, and when it has been
used, the resulting rules are typically created in a nascent state such that they have to be
crcatcd scveral times before they are fully Icarned.

B.4 Bibliography for Soar and ACT-R

ai.eccs.umich.cdu/soar/, the Soar Group’s homepage
act.psy.cmu.edu/, the ACT-R Group’s homepage
aes.ist.psu.edu/soar-faq, Soar Frcquently Asked Questions list
acs.ist.psu.edu/act-r-fag, ACT-R Frcquently Asked Questions list

Jones, G. (1996). The architectures of Soar and ACT-R, and how thcy model
human behaviour. Artificial Intelligence and Simulation of Behaviour Quarterly, 96
(Winter), 41-44.
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Johnson, T. R. (1997). Control in ACT-R and Soar. In M. Shafto & P. Langley (Eds.),
Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (pp. 343-
348). Hillsdale, NJ: Erlbaum.

Ritter, F. E. (2002). Soar. In Encyclopedia of cognitive science. London: Macmillan.
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Glossary of Acronyms and Abbreviations

ABC
ACT-R
ACT-R/PM

Al
AMBR

APEX

API
ATAL workshops

BDI architectures

CES
CHIRP

CHREST
CMAC
CoCoM
COSIMO
CREAM

DERA

DCOM
DIS
EPAM
EPIC

FLAME
GAs

A* scarch with Bounded Costs
Adaptive Control of Thought - Rational

A pereeptual-motor component added to
ACT-R

Artificial Intelligence

Agent-Based Modeling and Behavior
Representation project

A tool for applicd human performance
modeling developed at NASA

Applieation Programing Interface

Architecturcs, Theories, And Languages
Workshop scrics

Architecturcs bascd on representing Beliefs,
Desircs, and Intentions

Cognitive Environment Simulation

Confidential Human Factors Incident
Reporting Program

Chunk Hierarchy and REtrieval STruetures
Cerebellar Modcl Arithmetic Computer
Contextual Control Model

COgnitive SIMulation MOdel

Cognitive Rchability and Error Analysis
Method

Defence Evaluation and Research Ageney
(UK)

Distributed COmponent Modcl
Distributed Intcractive Simulation (system)
Elementary Pereeiver and Memoriscr

A cognitive architccturc based on a
production rule interpreter that assumes no
eognitive limitations on processing and a set
of perceptual motor processors that provide a
limitation on cognition.

Fuzzy Logic Adaptive Model of Emotions
Genctic Algorithms
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HCI
HILA
IDM

IMPS
JACK
JAVA

JEE
JNDI
KBS
LTM
MLP
ModSAF
NDM
ONR
RDM
RMI
SDM
SEs
SMOC
SRG
STM
UTC
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Human-Computer Interaction
Higher-Level Architecture

Individual Data Modeling, modeling based on
fitting the behavior of individuals and then
aggregating the results, as compared with
fitting data aggrcgated across subjccts.

Intcrnet-based Multi-agent Problem Solving
JAVA Agent Compiler and Kernel

A procedural language used to support wcb
applications

JAV A Foundation Classes

JAVA Naming and Directory Interface
Knowledge-Based Systems
Long-Term Memory
Multi-Layer Perceptron

Modular Semi-Automated Forces
Naturalistic Decision Making
Office of Naval Research

Rapid Decision Making

Remote Method Invoeation
Sparse Distributed Memory
Synthetic Environments
Simplified Model Of Cognition
System Response Generator
Short-Term Memory

Unified Theory of Cognition
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